QM5_Didstribution
Basic Concepts
Probability distribution
Discrete distribution (离散分布)
- The distribution of the discrete random variable.
- Discrete random variable
- takes on a finite and countable number of possible values.
Continuous distribution (连续分布)
- The distribution of the continuous random variable.
- Continuous random variable:
- takes on an infinite and uncountable number of possible values.
Probability function
Probability function (概率函数)
- For discrete random variable taking on a specific value
- p(x) = P(X=x)
- X: 随机变量; x: a specific value
Probability density function (概率密度函数)
- For continuous random variables within a range
- P(x1<X<x2)
- The probability of taking on an specific value is always zero, P(X=x)=0
- 因为连续随机变量有无数个数, 即分母为无穷大, 所以取到一个具体的值的概率是0. 这并不代表不可能取到个这值,只是相对于取值范围, 取到该值的可能性太小. 所以对连续随机变量, 研究具体的值没有什么价值, 研究的是range.
Cumulative probability function (累积概率函数)
- F(x) = P(X<=x)
插入图片, 用面积代表概率.
Dsicrete uniform distribution (离散均匀分布)
- Definition
- has a finite number of possible outcomes, all of which are equally likely.
- Example: X = {1,2,3,4,5}
- P(1) = P(2) = P(3) = P(4) = P(5) = 20%
- P(3) = P(1) + P(2) + P(3) = 60%
- P(2<=X<=4) = P(2) + P(3) + P(4) = 60%
Discrete Distribution
Binomial distribution ** (二项式分布)
Bernoulli random variable (trial,伯努利实验)
- Random variables with only two outcomes, one represents success(denoted as 1); the other represents failure(denoted as 0). P(X=1) = p, P(X=0) = 1-P.
- Binomial random variable
- The number of successes in a Bernoulli trials. (做n次Bernoulli trials就得到二项式分布)
- The probability of x successes in n trails.
插入老师板书.插入公式.
- Expected value and variance
插入图片
- 均值 => 期望值 => 算加权平均
- 计算器算排列组合: 10个中挑出6个, 10 => 2nd => + ->6 -> =.
Continuous Distribution
Continuous uniform distribution (连续均匀分布)
- Definition
- probability of continuous uniform random variable which distribute evenly over an interval.
- Properties
- P(X=x)=0
- P(x1<=X<=x2) = (x2-x1)/(b-a)
Normal distribution *** (正态分布)
Properties
- completely described by mean and variable.
- 只由两个参数决定 , 均值和方差.
插入公式
skewness = 0, kurtosis = 3
- Linear combination of normally distributed random variables is also normally distributed.
- 比如x1~n是线性的, x2~n也是线性的, 则3x1+2x2~n也是线性的.
- Probability descrase further from the mean, but the tails go on forever.
- completely described by mean and variable.
考点
- 性质
- 置信区间
- 标准化
Concepts
- Confidence interval 置信区间
- 落在区间内的概率, 就是切比雪夫.
- Confidence level 置信水平
- 置信水平 = 置信度
- Confidence degree 置信度
- Confidence interval 置信区间
- Properties
插入图
k : 依赖因子(关键值), Reliability factor /Critical value.
Standard normal distribution 标准正态分布
- also named z-distribution
- X~N (0,1), 正态分布均值是0, 方差是1.
- Standardization
- >>>插入公式
- z值含义
- 正态分布与标准正态分布位置相对应.
- 离标准正态分布均值的距离,即z个标准差.
- 算出z值后,查表(z-table), 查出累计概率.
- 例题
Shortfall risk **(缺口风险)
- Definition
- the risk that portfolio value or return will fall below the imnimum acceptable level(RL)
- Properties
- The lower, the better
Safety-first ratio **(第一安全比率)
- Definition
- the distance from the mean return to the shortfall elvel in units of standard deviation.
- Calculation
- >>>插入公式
- Properties
- The higher, the better
- Minimizing shortfall risk - Maximizing safety-first ratio
Lognormal distribution **
- Properties
插入图片
Student;s t-distribution ***
- Properties
- Defined by single parameter: degree of freedom(df), 由唯一一个参数决定.
- df = n-1, where: n is the sample size.
- Symmetrical, skewness = 0,
- Fatter tails than a normal distribution (低峰肥尾)
- As df increase t-distribution is approaching to standard normal distribution.
- Given a degree of confidence, t-distribution has a wider confidence interval than z-distribution.
- Defined by single parameter: degree of freedom(df), 由唯一一个参数决定.
- Shape
插图
Simulation (模拟)
插入图片
QM5_Didstribution的更多相关文章
随机推荐
- SharePoint 2007 列表页定制--4个默认页定制
以"简单的领导简介"为例,欢迎大家指正 背景:项目中需要有领导简介的模块,就开始制作领导简介,本来很简单,有一个列表就可以,然后在前台展示出来,但是客户看到我们的效果,尤其输入领导 ...
- Spring 学习笔记 Bean的作用域
在配置文件中定义Bean时,用户不但可以配置Bean的属性值以及相互之间的依赖关系,还可以定义Bean的作用域.作用域将对Bean的生命周期和创建方式产生影响.在低版本的Spring中,仅有两个作用域 ...
- C# Word转为多种格式文件(Word转XPS/SVG/EMF/EPUB/TIFF)
一款有着强大的文档转换功能的工具,无论何时何地都会是现代办公环境极为需要的.在本篇文章中,将继续介绍关于Word文档的转换功能(Word转XPS/SVG/EMF/EPUB/TIFF)希望方法中的代码能 ...
- .Net C# 串口 Serialort safe handle has been closed 问题的解决
最近在一个平台上使用SerialPort类开发程序时,发现程序在使用SerialPort类时会异常退出,而且诡异的是,就算把所有操作串口的代码都放在try{}catch{}块中也无法捕获这个异常.最终 ...
- 南京邮电大学java程序设计作业在线编程第六次作业
王利国的的 "Java语言程序设计第6次作业(2018)" 详细 主页 我的作业列表 作业结果详细 总分:100 选择题得分:60 1. Java中所有类的父类是(). A.Fa ...
- azkaban报错记录
问题信息:Failed to build job executor for job o2o_get_file_ftp1Job type 'command ' is unrecognized. Coul ...
- Memocache 详细的工作机制
memcached集群 2013-04-26 13:56:37| 分类: memcached | 标签:集群 memcached |举报|字号 订阅 集群架构方面的问题 memcach ...
- InnoDB的4个特性
innodb 的四个特性 insert buffer innodb使用insert buffer"欺骗"数据库:对于为非唯一索引,辅助索引的修改操作并非实时更新索引的叶子页,而是把 ...
- 网易面经(Java开发岗)
网易面经(Java岗) 网易两面面经整理 岗位:我投递的是杭研所的Java开发岗位.行程:半天的时间南京=杭州之间穿行,单程2个小时,从杭州东站=网易大厦,单程1个小时(如果能买到城站高铁动车票可以从 ...
- ES6(阮一峰)学习总结
1.块级作用域的引入 在ES6之前,js只有全局作用域和函数作用域,ES6中let关键字为其引入了块级作用域. { var a = 5; let b = 6; } console.log(a); co ...