Basic Concepts

Probability distribution

Discrete distribution (离散分布)
  • The distribution of the discrete random variable.
  • Discrete random variable
    • takes on a finite and countable number of possible values.
Continuous distribution (连续分布)
  • The distribution of the continuous random variable.
  • Continuous random variable:
    • takes on an infinite and uncountable number of possible values.

Probability function

Probability function (概率函数)
  • For discrete random variable taking on a specific value
  • p(x) = P(X=x)
    • X: 随机变量; x: a specific value
Probability density function (概率密度函数)
  • For continuous random variables within a range
  • P(x1<X<x2)
  • The probability of taking on an specific value is always zero, P(X=x)=0
  • 因为连续随机变量有无数个数, 即分母为无穷大, 所以取到一个具体的值的概率是0. 这并不代表不可能取到个这值,只是相对于取值范围, 取到该值的可能性太小. 所以对连续随机变量, 研究具体的值没有什么价值, 研究的是range.
Cumulative probability function (累积概率函数)
  • F(x) = P(X<=x)

插入图片, 用面积代表概率.

Dsicrete uniform distribution (离散均匀分布)

  • Definition

    • has a finite number of possible outcomes, all of which are equally likely.
  • Example: X = {1,2,3,4,5}
    • P(1) = P(2) = P(3) = P(4) = P(5) = 20%
    • P(3) = P(1) + P(2) + P(3) = 60%
    • P(2<=X<=4) = P(2) + P(3) + P(4) = 60%

Discrete Distribution

Binomial distribution ** (二项式分布)

Bernoulli random variable (trial,伯努利实验)
  • Random variables with only two outcomes, one represents success(denoted as 1); the other represents failure(denoted as 0). P(X=1) = p, P(X=0) = 1-P.
  • Binomial random variable
    • The number of successes in a Bernoulli trials. (做n次Bernoulli trials就得到二项式分布)
    • The probability of x successes in n trails.

插入老师板书.插入公式.

  • Expected value and variance

插入图片

  • 均值 => 期望值 => 算加权平均
  • 计算器算排列组合: 10个中挑出6个, 10 => 2nd => + ->6 -> =.

Continuous Distribution

Continuous uniform distribution (连续均匀分布)

  • Definition

    • probability of continuous uniform random variable which distribute evenly over an interval.
  • Properties
    • P(X=x)=0
    • P(x1<=X<=x2) = (x2-x1)/(b-a)

Normal distribution *** (正态分布)

  • Properties

    • completely described by mean and variable.

      • 只由两个参数决定 , 均值和方差.
    • 插入公式

    • skewness = 0, kurtosis = 3

    • Linear combination of normally distributed random variables is also normally distributed.
      • 比如x1~n是线性的, x2~n也是线性的, 则3x1+2x2~n也是线性的.
    • Probability descrase further from the mean, but the tails go on forever.
  • 考点

    • 性质
    • 置信区间
    • 标准化
  • Concepts

    • Confidence interval 置信区间

      • 落在区间内的概率, 就是切比雪夫.
    • Confidence level 置信水平
      • 置信水平 = 置信度
    • Confidence degree 置信度
  • Properties

插入图

  • k : 依赖因子(关键值), Reliability factor /Critical value.

  • Standard normal distribution 标准正态分布

    • also named z-distribution
    • X~N (0,1), 正态分布均值是0, 方差是1.
    • Standardization
    • >>>插入公式
    • z值含义
      • 正态分布与标准正态分布位置相对应.
      • 离标准正态分布均值的距离,即z个标准差.
      • 算出z值后,查表(z-table), 查出累计概率.
  • 例题

Shortfall risk **(缺口风险)

  • Definition

    • the risk that portfolio value or return will fall below the imnimum acceptable level(RL)
  • Properties
    • The lower, the better

Safety-first ratio **(第一安全比率)

  • Definition

    • the distance from the mean return to the shortfall elvel in units of standard deviation.
  • Calculation
  • >>>插入公式
  • Properties
  • The higher, the better
  • Minimizing shortfall risk - Maximizing safety-first ratio

Lognormal distribution **

  • Properties

插入图片

Student;s t-distribution ***

  • Properties

    • Defined by single parameter: degree of freedom(df), 由唯一一个参数决定.

      • df = n-1, where: n is the sample size.
    • Symmetrical, skewness = 0,
    • Fatter tails than a normal distribution (低峰肥尾)
    • As df increase t-distribution is approaching to standard normal distribution.
    • Given a degree of confidence, t-distribution has a wider confidence interval than z-distribution.
  • Shape

插图

Simulation (模拟)

插入图片

QM5_Didstribution的更多相关文章

随机推荐

  1. 详解PNG文件结构

    前言 PNG,JPEG,GIF,BMP作为数据压缩文件,有许多重要的信息我们需要区深度解析. 一.PNG的文件结构 1.1.数据块构成结构 PNG文件结构很简单,主要有数据块(Chunk Block) ...

  2. 返回空的list集合*彻底删除删除集合*只是清空集合

    ---------- 要求返回空的List集合----------- List<String> allList = Collections.emptyList();// 返回空的List集 ...

  3. Memcache架构新思考

    2011年初Marc Kwiatkowski通过Memecache@Facebook介绍了Facebook的Memcache架构,现在重新审视这个架构,仍有很多方面在业界保持先进性.作为weibo内部 ...

  4. JqueryMobile学习记录一

    安装 做页面之前首先引用三个文件: <link href="/Scripts/jquery.mobile-1.4.5/jquery.mobile-1.4.5.css" rel ...

  5. 使用mpvue开发微信小程序

    更多内容请查看 我的新博客 地址 : 前言 16年小程序刚出来的时候,就准备花点时间去学学.无奈现实中手上项目太多,一个接着一个,而且也没有开发小程序的需求,所以就一拖再拖. 直到上周,终于有一个小程 ...

  6. 解读2017之Service Mesh:群雄逐鹿烽烟起

    https://mp.weixin.qq.com/s/ur3PmLZ6VjP5L5FatIYYmg 在过去的2016年和2017年,微服务技术得以迅猛普及,和容器技术一起成为这两年中最吸引眼球的技术热 ...

  7. The 4 Essentials of Video Content Marketing Success

    https://www.entrepreneur.com/article/243208 As videos become increasingly popular, they provide the ...

  8. Android字符串资源及其格式化

    http://blog.csdn.NET/wsywl/article/details/6555959 在Android项目布局中,资源以XML文件的形式存储在res/目录下.为了更好的实现国际化及本地 ...

  9. PCA算法和python实现

    第十三章 利用PCA来简化数据 一.降维技术 当数据的特征很多的时候,我们把一个特征看做是一维的话,我们数据就有很高的维度.高维数据会带来计算困难等一系列的问题,因此我们需要进行降维.降维的好处有很多 ...

  10. REBEL IDEA热部署插件使用

    启动 一.在IDEA 的Plugins中搜索Jrebel for intellij 插件 二.https://my.jrebel.com/account/how-to-activate 注册或者使用f ...