pytorch-MNIST数据模型测试
用pytorch搭建一个DNN网络,主要目的是熟悉pytorch的使用
"""
test Function
""" import torch
from torch import nn, optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets, transforms class simpleNet(nn.Module):
''' define the 3 layers Network'''
def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
super(simpleNet, self).__init__()
self.layer1 = nn.Linear(in_dim, n_hidden_1)
self.layer2 = nn.Linear(n_hidden_1, n_hidden_2)
self.layer3 = nn.Linear(n_hidden_2, out_dim) def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
return x class Activation_Net(nn.Module):
def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
super(Activation_Net, self).__init__()
self.layer1 = nn.Sequential(
nn.Linear(in_dim, n_hidden_1), nn.ReLU(True)
)
self.layer2 = nn.Sequential(
nn.Linear(n_hidden_1, n_hidden_2), nn.ReLU(True)
)
self.layer3 = nn.Sequential(
nn.Linear(n_hidden_2, out_dim)
) def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
return x class Batch_Net(nn.Module):
def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
super(Batch_Net, self).__init__()
self.layer1 = nn.Sequential(
nn.Linear(in_dim, n_hidden_1), nn.BatchNorm1d(n_hidden_1) ,nn.ReLU(True)
)
self.layer2 = nn.Sequential(
nn.Linear(n_hidden_1,n_hidden_2), nn.BatchNorm1d(n_hidden_2), nn.ReLU(True)
)
self.layer3 = nn.Sequential(
nn.Linear(n_hidden_2, out_dim)
) def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
return x batch_size = 64
learning_rate = 1e-2
num_epochs = 20 data_tf = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
) train_dataset = datasets.MNIST(root='./data', train=True, transform=data_tf, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=data_tf)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) model = Batch_Net(28*28, 300, 100, 10)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate) # Training
epoch = 0
for data in train_loader:
img, label = data
img = img.view(img.size(0), -1)
img = Variable(img)
label = Variable(label)
out = model(img)
loss = criterion(out, label)
print_loss = loss.data.item() optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch += 1
if epoch % 50 == 0:
print('epoch:{}, loss:{:.4f}'.format(epoch, loss.data.item())) # Evalue
model.eval() # turn the model to test pattern, do some as dropout, batchNormalization
eval_loss = 0
eval_acc = 0
for data in test_loader:
img, label = data
img = img.view(img.size(0), -1)
img = Variable(img) # 前向传播不需要保留缓存,释放掉内存,节约内存空间
label = Variable(label)
out = model(img)
loss = criterion(out, label) eval_loss += loss.data * label.size(0)
_, pred = torch.max(out, 1) # 返回每一行中最大值和对应的索引
s = (pred == label)
num_correct = (pred == label).sum()
eval_acc += num_correct.data.item()
print('Test Loss:{:6f}, Acc:{:.6f}'.format(eval_loss/len(test_dataset), eval_acc/len(test_dataset)))

pytorch-MNIST数据模型测试的更多相关文章
- Tensorflow MNIST 数据集测试代码入门
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50614444 测试代码已上传至GitH ...
- 深入MNIST code测试
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50624471 依照教程:深入MNIST ...
- highway network及mnist数据集测试
先说结论:没经过仔细调参,打不开论文所说代码链接(fq也没打开),结果和普通卷积网络比较没有优势.反倒是BN对网络起着非常重要的作用,达到了99.17%的测试精度(训练轮数还没到过拟合). 论文为&l ...
- mxnet卷积神经网络训练MNIST数据集测试
mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型及日志的保存 import numpy as np import mxnet as mx import logging logging. ...
- 如何使用Pytorch迅速实现Mnist数据及分类器
一段时间没有更新博文,想着也该写两篇文章玩玩了.而从一个简单的例子作为开端是一个比较不错的选择.本文章会手把手地教读者构建一个简单的Mnist(Fashion-Mnist同理)的分类器,并且会使用相对 ...
- Caffe初试(二)windows下的cafee训练和测试mnist数据集
一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试 ...
- 使用xshell+xmanager+pycharm搭建pytorch远程调试开发环境
1. 相关软件版本 xshell: xmanager: pycharm: pycharm破解服务器:https://jetlicense.nss.im/ 2. 将相应的软件安装(pojie好) a&g ...
- Pytorch学习之源码理解:pytorch/examples/mnists
Pytorch学习之源码理解:pytorch/examples/mnists from __future__ import print_function import argparse import ...
- [源码解析] PyTorch 分布式(4)------分布式应用基础概念
[源码解析] PyTorch 分布式(4)------分布式应用基础概念 目录 [源码解析] PyTorch 分布式(4)------分布式应用基础概念 0x00 摘要 0x01 基本概念 0x02 ...
随机推荐
- SharePoint 2016 - 安装QuickFlow2013
本文记录在SharePoint 2016上安装QuickFlow的步骤. QuickFlow尚未推出针对SP16版本的安装包,不过,for SP13版本的wsp是可以直接用于SP16的 1)添加wsp ...
- git图解
- Ubuntu18.04下的模拟神器RetroArch
安装 直接通过apt安装 sudo add-apt-repository ppa:libretro/stable sudo apt update sudo apt install retroarch ...
- 一个网站SEO优化方案
首先,前端/页编人员主要负责站内优化,主要从四个方面入手: 第一个,站内结构优化 合理规划站点结构(1.扁平化结构 2.辅助导航.面包屑导航.次导航) 内容页结构设置(最新文章.推荐文章.热门文章.增 ...
- Linux下清理内存和Cache方法见下文:
暂时目前的环境处理方法比较简单: 在root用户下添加计划任务: */10 * * * * sync;echo 3 > /proc/sys/vm/drop_caches; 每十分钟执行一次,先将 ...
- APP微信支付Java后台的实现(springmvc)
第一次做微信支付,阅读完开发文档后,下了个官方demo,摸索了好久,期间也出现了好多问题,终于是实现生成预支付订单以及支付成功后接收微信服务器通知,不多说了,直接上代码: 一.工具类 Constant ...
- v2ray和ss的安装资料整理
v2ray: 1. https://yuan.ga/v2ray-complete-tutorial/ 2. https://toutyrater.github.io/ 推荐使用:v2ray,会比ss快 ...
- atitit 各分公司ceo cao行政经理职责.docx
1.1. 人员招募--分公司高层人员招募(每月招募四五人吧,每周一人平均) 1 1.2. 组织架构优化 1 1.3. 制度建设 健全并完善分公司内部管理机构设置,优化分公司业务管理流程: 1 1.4 ...
- lua中table的遍历,以及删除
Lua 内table遍历 在lua中有4种方式遍历一个table,当然,从本质上来说其实都一样,只是形式不同,这四种方式分别是: 1. ipairs for index, value in ipair ...
- jinfo
jinfo是jdk自带的命令,用来查看.修改jvm的配置参数. [weblogic@host bin]$ jinfo-bash: jinfo: command not found[weblogic@h ...