C_关于递归算法的几个例子
1.递归算法的定义:

2.递归与迭代的优劣

eg1:斐波那契数列:斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=1,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)
/*
斐波那契数列 迭代实现 (打印出前40个)
*/
#include <stdio.h>
int main(){
int i, arr[];
arr[] = ;
arr[] = ;
printf("%d %d ",arr[],arr[]);
for(i=; i<; i++){
arr[i] = arr[i-] + arr[i-];
printf("%d ",arr[i]);
}
printf("\n"); return ; }
/*
斐波那契数列 递归实现 (打印出前40个)
*/
#include <stdio.h>
/*
int fb(int n){
if(n == 0){
return 0;
}else if(n == 1){
return 1;
}else{
return fb(n-1) + fb(n-2);
}
}
*/ int fb(int n){
if(n<){
return n == ? :;
}else{
return fb(n-) + fb (n-);
} } int main(){
int i;
for(i=; i<; i++){
printf("%d ",fb(i));
}
printf("\n"); return ;
}
eg2:阶乘:亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
/*
递归实现阶乘
递归方式定义:0!=1,n!=(n-1)!×n。
*/ #include <stdio.h>
int fact(n){
if(n == ){
return ;
}else{
return fact(n-) * n;
}
} int main(){
int n = ;
printf("%d\n",fact(n));
return ;
}
eg3:

#include <stdio.h>
int print(){
char a;
scanf("%c", &a);
if(a != '#'){
print();
}
if(a != '#'){
printf("%c",a);
}
return ;
}
int main(){
print();
printf("\n");
return ;
}
解题思路:

eg4:二分法查找
/*
二分法查找:迭代实现
*/
#include <stdio.h>
int main(){
int arr[] = {,,,,,,,,,};
int input, low, high, mid;
low = ;
high = ;
mid = (low + high) / ;
scanf("%d", &input); while(input != arr[mid]){
if(input < arr[mid]){
high = mid;
mid = (low + high) / ;
}else{
low = mid;
mid = (low + high) / ;
}
}
printf("%d ",mid);/*输出要查找数字在数组中的下标*/
return ; }
/*
二分法查找:递归实现
*/ #include <stdio.h>
int fun(int low, int high, int input, int arr[]){
int mid;
mid = (low + high) /;
if(arr[mid] == input){
return mid;
}else{
if(input < arr[mid]){
high = mid;
return fun( low, high, input, arr);
}else{
low = mid;
return fun( low, high, input, arr);
}
} }
int main(){
int arr[] = {,,,,,,,,,};
int input, low, high;
low = ;
high = ;
scanf("%d", &input);
printf("%d \n",fun(low, high, input, arr));/*输出要查找数字在数组中的下标*/
return ;
}
C_关于递归算法的几个例子的更多相关文章
- JAVA递归算法及经典递归例子 对于这个汉诺塔问题
前言:递归(recursion):递归满足2个条件 1)有反复执行的过程(调用自身) 2)有跳出反复执行过程的条件(递归出口) 第一题:汉诺塔 对于这个汉诺塔问题,在写递归时,我们只需要确定两个条件: ...
- c 递归函数浅析
所谓递归,简而言之就是应用程序自身调用自身,以实现层次数据结构的查询和访问. 递归的使用可以使代码更简洁清晰,可读性更好(对于初学者到不见得),但由于递归需要系统堆栈,所以空间消耗要比非递归代码要大很 ...
- 归并排序python实现
归并排序python实现 归并排序 归并排序在于把序列拆分再合并起来,使用分治法来实现,这就意味这要构造递归算法 首先是一个例子 原序先通过一半一半的拆分,然后: 然后再一步一步的向上合并,在合并的过 ...
- Master定理学习笔记
前言 \(Master\)定理,又称主定理,用于程序的时间复杂度计算,核心思想是分治,近几年\(Noip\)常考时间复杂度的题目,都需要主定理进行运算. 前置 我们常见的程序时间复杂度有: \(O(n ...
- 如何计算一个字符串表示的计算式的值?——C_递归算法实现
在<C程序设计伴侣>的8.7.3 向main()函数传递数据这一小节中,我们介绍了如何通过main()函数的参数,向程序传递两个数据并计算其和值的简单加法计算器add.exe.这个程序,好 ...
- 第二篇、C_递归算法
简介: 在实际应用当中,我们常常会接触到一些递归的数法. 递归算法的特点 递归算法是一种直接或者间接地调用自身算法的过程.在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简 ...
- Kernel Methods (1) 从简单的例子开始
一个简单的分类问题, 如图左半部分所示. 很明显, 我们需要一个决策边界为椭圆形的非线性分类器. 我们可以利用原来的特征构造新的特征: \((x_1, x_2) \to (x_1^2, \sqrt 2 ...
- C语言数据结构----递归的应用(斐波拉契数列、汉诺塔、strlen的递归算法)
本节主要说了递归的设计和算法实现,以及递归的基本例程斐波拉契数列.strlen的递归解法.汉诺塔和全排列递归算法. 一.递归的设计和实现 1.递归从实质上是一种数学的解决问题的思维,是一种分而治之的思 ...
- (转)递归算法的时间复杂度终结篇与Master method
开篇前言:为什么写这篇文章?笔者目前在学习各种各样的算法,在这个过程中,频繁地碰到到递归思想和分治思想,惊讶于这两种的思想的伟大与奇妙的同时,经常要面对的一个问题就是,对于一个给定的递归算法或者用分治 ...
随机推荐
- curl请求https请求
function curl_https($url,$data){ $ch = curl_init (); curl_setopt ( $ch, CURLOPT_URL, $url ); curl_se ...
- 关于sizeof与#pragma pack 以及网络上关于字节对齐的一点感想
工作中面试中对于字节对齐基本上是必考一个知识点,而很多面试是网络上上原题.基本上背一背就可以写正确,而关于4字节对齐我相信很多人也只是一个基本地了解,对于一些题目就感觉有问题,而且很多blog后面仍然 ...
- 在vs.net 2010,2015 等版本,给JS函数添加代码提示\注释
经常编写JS的朋友常常会因为函数写多了,隔一段时间就会忘记了函数的用途,或者函数里带的参数作用情况,这个时候会联想到VS工具里的强大提示功能,多希望也能在JS上实现呀,告诉你,这个想法并不是多难,VS ...
- 无法删除另一个分区的windows文件夹
转自:http://zhidao.baidu.com/link?url=77mJiLzVTdr9LzW4R6UYHZ8OJovvXsH8HQb0hyUKL4RKv2J3bItFJgJx-xqAEGOj ...
- Vim的合并行操作
日常常用到多行合并的功能,记录如下: 第一种, 多行合并成一行,即: AAAAABBBBBCCCCC 合并为:AAAAA BBBBB CCCCC 方法1: normal状态下 3J 其中的3是范围,可 ...
- tomcat调度配置
调度可以基于nginx和http的调度 配置环境 1 安装tomcat 2 创建一个test测试页面 mkdir /var/lib/tomcat/webapps/test/{WEB-INF,META ...
- gitlab之六: gitlab 备份恢复
参考: https://blog.csdn.net/ouyang_peng/article/details/77070977 备份: 所有的权限,库文件等信息全部备份到的 不更改备份目录的话: v ...
- BZOJ3583 杰杰的女性朋友 矩阵
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ3583.html 题目传送门 - BZOJ3583 题意 有一个 $n$ 个点构成的有向图. 对于每一个 ...
- CentOS 7.2配置Apache服务httpd小伙伴们可以参考一下
这篇文章主要为大家详细介绍了CentOS 7.2配置Apache服务 httpd上篇,具有一定的参考价值,感兴趣的小伙伴们可以参考一下 一.Perl + mod_perl 安装mod_perl使Per ...
- mysql group_concat时间用法
第一张表的worksId在第二张表中对应多条数据,需要将每条数据的日期作为结果查询出来,一个作为“初审时间”,另一个作为“复审时间”: 可以使用group_concat 和 group by 来进行分 ...