https://www.kaggle.com/kakauandme/tensorflow-deep-nn

本人只是负责将这个kernels的代码整理了一遍,具体还是请看原链接

import numpy as np
import pandas as pd
import tensorflow # settings
LEARNING_RATE = 1e-4
# set to 20000 on local environment to get 0.99 accuracy
TRAINING_ITERATIONS = 20000 DROPOUT = 0.5
BATCH_SIZE = 50 # set to 0 to train on all available data
VALIDATION_SIZE = 2000 # image number to output
IMAGE_TO_DISPLAY = 10 # read training data from CSV file
data = pd.read_csv('D://kaggle//DigitRecognizer//data//train.csv') images = data.iloc[:,1:].values
images = images.astype(np.float)
# convert from [0:255] => [0.0:1.0]
images = np.multiply(images, 1.0 / 255.0) image_size = images.shape[1]
print ('image_size => {0}'.format(image_size)) # in this case all images are square
image_width = image_height = np.ceil(np.sqrt(image_size)).astype(np.uint8) print ('image_width => {0}\nimage_height => {1}'.format(image_width,image_height)) labels_flat = data.iloc[:,0].values print('labels_flat({0})'.format(len(labels_flat)))
print ('labels_flat[{0}] => {1}'.format(IMAGE_TO_DISPLAY,labels_flat[IMAGE_TO_DISPLAY])) labels_count = np.unique(labels_flat).shape[0] print('labels_count => {0}'.format(labels_count)) def dense_to_one_hot(labels_dense, num_classes):
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot labels = dense_to_one_hot(labels_flat, labels_count)
labels = labels.astype(np.uint8) print('labels({0[0]},{0[1]})'.format(labels.shape))
print ('labels[{0}] => {1}'.format(IMAGE_TO_DISPLAY,labels[IMAGE_TO_DISPLAY])) # split data into training & validation
validation_images = images[:VALIDATION_SIZE]
validation_labels = labels[:VALIDATION_SIZE] train_images = images[VALIDATION_SIZE:]
train_labels = labels[VALIDATION_SIZE:] print('train_images({0[0]},{0[1]})'.format(train_images.shape))
print('validation_images({0[0]},{0[1]})'.format(validation_images.shape)) # weight initialization
def weight_variable(shape):
initial = tensorflow.truncated_normal(shape, stddev=0.1)
return tensorflow.Variable(initial) def bias_variable(shape):
initial = tensorflow.constant(0.1, shape=shape)
return tensorflow.Variable(initial) # convolution
def conv2d(x, W):
return tensorflow.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') # pooling
# [[0,3],
# [4,2]] => 4 # [[0,1],
# [1,1]] => 1 def max_pool_2x2(x):
return tensorflow.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # input & output of NN # images
x = tensorflow.placeholder('float', shape=[None, image_size])
# labels
y_ = tensorflow.placeholder('float', shape=[None, labels_count]) # first convolutional layer
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32]) # (40000,784) => (40000,28,28,1)
image = tensorflow.reshape(x, [-1,image_width , image_height,1])
#print (image.get_shape()) # =>(40000,28,28,1) h_conv1 = tensorflow.nn.relu(conv2d(image, W_conv1) + b_conv1)
#print (h_conv1.get_shape()) # => (40000, 28, 28, 32)
h_pool1 = max_pool_2x2(h_conv1)
#print (h_pool1.get_shape()) # => (40000, 14, 14, 32) # Prepare for visualization
# display 32 fetures in 4 by 8 grid
layer1 = tensorflow.reshape(h_conv1, (-1, image_height, image_width, 4 ,8)) # reorder so the channels are in the first dimension, x and y follow.
layer1 = tensorflow.transpose(layer1, (0, 3, 1, 4,2)) layer1 = tensorflow.reshape(layer1, (-1, image_height*4, image_width*8)) # second convolutional layer
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64]) h_conv2 = tensorflow.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
#print (h_conv2.get_shape()) # => (40000, 14,14, 64)
h_pool2 = max_pool_2x2(h_conv2)
#print (h_pool2.get_shape()) # => (40000, 7, 7, 64) # Prepare for visualization
# display 64 fetures in 4 by 16 grid
layer2 = tensorflow.reshape(h_conv2, (-1, 14, 14, 4 ,16)) # reorder so the channels are in the first dimension, x and y follow.
layer2 = tensorflow.transpose(layer2, (0, 3, 1, 4,2)) layer2 = tensorflow.reshape(layer2, (-1, 14*4, 14*16)) # densely connected layer
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024]) # (40000, 7, 7, 64) => (40000, 3136)
h_pool2_flat = tensorflow.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tensorflow.nn.relu(tensorflow.matmul(h_pool2_flat, W_fc1) + b_fc1)
#print (h_fc1.get_shape()) # => (40000, 1024) # dropout
keep_prob = tensorflow.placeholder('float')
h_fc1_drop = tensorflow.nn.dropout(h_fc1, keep_prob) # readout layer for deep net
W_fc2 = weight_variable([1024, labels_count])
b_fc2 = bias_variable([labels_count]) y = tensorflow.nn.softmax(tensorflow.matmul(h_fc1_drop, W_fc2) + b_fc2) #print (y.get_shape()) # => (40000, 10) # cost function
cross_entropy = -tensorflow.reduce_sum(y_*tensorflow.log(y)) # optimisation function
train_step = tensorflow.train.AdamOptimizer(LEARNING_RATE).minimize(cross_entropy) # evaluation
correct_prediction = tensorflow.equal(tensorflow.argmax(y,1),tensorflow.argmax(y_,1)) accuracy = tensorflow.reduce_mean(tensorflow.cast(correct_prediction, 'float')) # prediction function
#[0.1, 0.9, 0.2, 0.1, 0.1 0.3, 0.5, 0.1, 0.2, 0.3] => 1
predict = tensorflow.argmax(y,1) epochs_completed = 0
index_in_epoch = 0
num_examples = train_images.shape[0] # serve data by batches
def next_batch(batch_size): global train_images
global train_labels
global index_in_epoch
global epochs_completed start = index_in_epoch
index_in_epoch += batch_size # when all trainig data have been already used, it is reorder randomly
if index_in_epoch > num_examples:
# finished epoch
epochs_completed += 1
# shuffle the data
perm = np.arange(num_examples)
np.random.shuffle(perm)
train_images = train_images[perm]
train_labels = train_labels[perm]
# start next epoch
start = 0
index_in_epoch = batch_size
assert batch_size <= num_examples
end = index_in_epoch
return train_images[start:end], train_labels[start:end] # start TensorFlow session
init = tensorflow.initialize_all_variables()
sess = tensorflow.InteractiveSession() sess.run(init) # visualisation variables
train_accuracies = []
validation_accuracies = []
x_range = [] display_step=1 for i in range(TRAINING_ITERATIONS): #get new batch
batch_xs, batch_ys = next_batch(BATCH_SIZE) # check progress on every 1st,2nd,...,10th,20th,...,100th... step
if i%display_step == 0 or (i+1) == TRAINING_ITERATIONS: train_accuracy = accuracy.eval(feed_dict={x:batch_xs,
y_: batch_ys,
keep_prob: 1.0})
if(VALIDATION_SIZE):
validation_accuracy = accuracy.eval(feed_dict={ x: validation_images[0:BATCH_SIZE],
y_: validation_labels[0:BATCH_SIZE],
keep_prob: 1.0})
print('training_accuracy / validation_accuracy => %.2f / %.2f for step %d'%(train_accuracy, validation_accuracy, i)) validation_accuracies.append(validation_accuracy) else:
print('training_accuracy => %.4f for step %d'%(train_accuracy, i))
train_accuracies.append(train_accuracy)
x_range.append(i) # increase display_step
if i%(display_step*10) == 0 and i:
display_step *= 10
# train on batch
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: DROPOUT}) # read test data from CSV file
test_images = pd.read_csv('D://kaggle//DigitRecognizer//data//test.csv').values
test_images = test_images.astype(np.float) # convert from [0:255] => [0.0:1.0]
test_images = np.multiply(test_images, 1.0 / 255.0) print('test_images({0[0]},{0[1]})'.format(test_images.shape)) # predict test set
#predicted_lables = predict.eval(feed_dict={x: test_images, keep_prob: 1.0}) # using batches is more resource efficient
predicted_lables = np.zeros(test_images.shape[0])
for i in range(0,test_images.shape[0]//BATCH_SIZE):
predicted_lables[i*BATCH_SIZE : (i+1)*BATCH_SIZE] = predict.eval(feed_dict={x: test_images[i*BATCH_SIZE : (i+1)*BATCH_SIZE],
keep_prob: 1.0}) print('predicted_lables({0})'.format(len(predicted_lables))) # output test image and prediction
# display(test_images[IMAGE_TO_DISPLAY])
print ('predicted_lables[{0}] => {1}'.format(IMAGE_TO_DISPLAY,predicted_lables[IMAGE_TO_DISPLAY])) # save results
np.savetxt('D://kaggle//DigitRecognizer//submission_softmax.csv',
np.c_[range(1,len(test_images)+1),predicted_lables],
delimiter=',',
header = 'ImageId,Label',
comments = '',
fmt='%d')
layer1_grid = layer1.eval(feed_dict={x: test_images[IMAGE_TO_DISPLAY:IMAGE_TO_DISPLAY+1], keep_prob: 1.0})
sess.close()

tensorflow 手写数字识别的更多相关文章

  1. Tensorflow手写数字识别(交叉熵)练习

    # coding: utf-8import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #pr ...

  2. Tensorflow手写数字识别训练(梯度下降法)

    # coding: utf-8 import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #p ...

  3. Tensorflow手写数字识别---MNIST

    MNIST数据集:包含数字0-9的灰度图, 图片size为28x28.训练样本:55000,测试样本:10000,验证集:5000

  4. tensorflow手写数字识别(有注释)

    import tensorflow as tf import numpy as np # const = tf.constant(2.0, name='const') # b = tf.placeho ...

  5. 卷积神经网络应用于tensorflow手写数字识别(第三版)

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...

  6. 基于tensorflow的MNIST手写数字识别(二)--入门篇

    http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...

  7. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  8. 手写数字识别 ----在已经训练好的数据上根据28*28的图片获取识别概率(基于Tensorflow,Python)

    通过: 手写数字识别  ----卷积神经网络模型官方案例详解(基于Tensorflow,Python) 手写数字识别  ----Softmax回归模型官方案例详解(基于Tensorflow,Pytho ...

  9. 手写数字识别 ----卷积神经网络模型官方案例注释(基于Tensorflow,Python)

    # 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/ ...

随机推荐

  1. Scala学习教程笔记三之函数式编程、集合操作、模式匹配、类型参数、隐式转换、Actor、

    1:Scala和Java的对比: 1.1:Scala中的函数是Java中完全没有的概念.因为Java是完全面向对象的编程语言,没有任何面向过程编程语言的特性,因此Java中的一等公民是类和对象,而且只 ...

  2. Centos7编译安装GCC7.2

    通常编译的时候可能需要新版本的gcc,本文就说明下基于低版本的gcc升级为gcc7.2 wget 'http://mirrors-usa.go-parts.com/gcc/releases/gcc-7 ...

  3. Spring boot web程序static资源放在jar外部

    spring boot程序的static目录默认在resources/static目录, 打包为jar的时候,会把static目录打包进去,这样会存在一些问题: static文件过多,造成jar包体积 ...

  4. 【Arduino】Arduino接收字符串

    [Arduino]Arduino接收字符串 相关文章 [Arduino]开发入门[十]Arduino蓝牙模块与Android实现通信 在[Arduino]开发入门[十]Arduino蓝牙模块与Andr ...

  5. Office 2010 word无法创建工作文件 请检查临时环境变量 的解决办法

    Office 2010 word无法创建工作文件 请检查临时环境变量 的解决办法 http://hi.baidu.com/netshen/item/207fd935d452e0e9df2221c9 如 ...

  6. Python学习(二十三)—— 前端基础之jQuery

    转载自http://www.cnblogs.com/liwenzhou/p/8178806.html 一.jQuery入门 jQuery是一个轻量级的.兼容多浏览器的JavaScript库. jQue ...

  7. docker inspect命令

    docker inspect -f {{.NetworkSettings.Networks.crawling_pro.NetworkID}} crawling_internationalmacro_p ...

  8. 用jquery设置的值,miniui.getData取不到

    用jquery设置的值,miniui.getData取不到

  9. Codeforces 998D. Roman Digits 【打表找规律】

    <题目链接> 题目大意: 现在有无限个 1,5,10,50这四个数字,从中恰好挑选n个数字,问你这些数字的和总共有多少种不同的情况. 解题分析: 由于此题 n 的范围特别大,达到了1e9, ...

  10. ctf study of jarvisoj reverse

    [61dctf] androideasy 164求解器 50 相反 脚本如下: s='' a=113, 123, 118, 112, 108, 94, 99, 72, 38, 68, 72, 87, ...