MATLAB矩阵的LU分解及在解线性方程组中的应用
作者:凯鲁嘎吉 - 博客园
http://www.cnblogs.com/kailugaji/

三、实验程序



五、解答(按如下顺序提交电子版)
1.(程序)
(1)LU分解源程序:
function [l,u]=lu12(a,n)
for k=1:n-1
for i=k+1:n
a(i,k)=a(i,k)/a(k,k);
for j=k+1:n
a(i,j)=a(i,j)-a(i,k)*a(k,j);
end
end
end
l=eye(n);
u=zeros(n,n);
for k=1:n
for i=k:n
u(k,i)=a(k,i);
end
end
for k=1:n
for j=1:k-1
l(k,j)=a(k,j);
end
end
(2)直接三角分解法源程序:
function [a,l,u,y,x]=direct_triangle(a,b,n)
%a为N*N矩阵,b为n*1列向量
for k=1:n-1
for i=k+1:n
a(i,k)=a(i,k)/a(k,k);
for j=k+1:n
a(i,j)=a(i,j)-a(i,k)*a(k,j);
end
end
end
l=eye(n);
u=zeros(n,n);
for k=1:n
for i=k:n
u(k,i)=a(k,i);
end
end
for k=1:n
for j=1:k-1
l(k,j)=a(k,j);
end
end
y=ones(n,1);
x=ones(n,1);
y(1,1)=b(1,1);
for i=2:n
s=0;
for k=1:i-1
s=s+l(i,k)*y(k,1);
end
y(i,1)=b(i,1)-s;
end x(n,1)=y(n,1)/u(n,n);
for j=n-1:-1:1
s1=0;
for k1=j+1:n
s1=s1+u(j,k1)*x(k1,1);
end
x(j,1)=(y(j,1)-s1)/u(j,j);
end
2.(运算结果)
(1)求一个4阶矩阵的LU分解。

>> a=[10,7,8,7;7,5,6,5;8,6,10,9;7,5,9,10];
>> [l,u]=lu12(a,4) l = 1.0000 0 0 0
0.7000 1.0000 0 0
0.8000 4.0000 1.0000 0
0.7000 1.0000 1.5000 1.0000 u = 10.0000 7.0000 8.0000 7.0000
0 0.1000 0.4000 0.1000
0 0 2.0000 3.0000
0 0 0 0.5000

>> a=[10 7 8 7;7 5 6 5;8 6 10 9;7 5 9 10];b=[32 23 33 31]';
>> [a,l,u,y,x]=direct_triangle(a,b,4) a = 10.0000 7.0000 8.0000 7.0000
0.7000 0.1000 0.4000 0.1000
0.8000 4.0000 2.0000 3.0000
0.7000 1.0000 1.5000 0.5000 l = 1.0000 0 0 0
0.7000 1.0000 0 0
0.8000 4.0000 1.0000 0
0.7000 1.0000 1.5000 1.0000 u = 10.0000 7.0000 8.0000 7.0000
0 0.1000 0.4000 0.1000
0 0 2.0000 3.0000
0 0 0 0.5000 y = 32.0000
0.6000
5.0000
0.5000 x = 1.0000
1.0000
1.0000
1.0000

比如,希尔伯特矩阵就是一个病态矩阵,在方程组问题求解之前,可以先判断其条件数是否较大。
源程序:hilbert.m:
function [A,cond1]=hilbert(k)
format rat
A=zeros(k,k);
for m=1:k
for n=1:k
A(m,n)=1/(m+n-1);
end
end
cond1=cond(A,inf);
运行结果:
>> [A,cond1]=hilbert(3)
A =
1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5
cond1 =
748
>> [A,cond1]=hilbert(4)
A =
1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7
cond1 =
28375
>> [A,cond1]=hilbert(5)
A =
1 1/2 1/3 1/4 1/5
1/2 1/3 1/4 1/5 1/6
1/3 1/4 1/5 1/6 1/7
1/4 1/5 1/6 1/7 1/8
1/5 1/6 1/7 1/8 1/9
cond1 =
943656
从结果可见希尔伯特矩阵是一个病态矩阵,用一般的直接法和迭代法会有较大的误差,甚至严重失真。
MATLAB矩阵的LU分解及在解线性方程组中的应用的更多相关文章
- 线性代数笔记10——矩阵的LU分解
在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析 ...
- 矩阵LU分解的MATLAB与C++实现
一:矩阵LU分解 矩阵的LU分解目的是将一个非奇异矩阵\(A\)分解成\(A=LU\)的形式,其中\(L\)是一个主对角线为\(1\)的下三角矩阵:\(U\)是一个上三角矩阵. 比如\(A= \beg ...
- 矩阵LU分解分块算法实现
本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去 ...
- 矩阵分解---QR正交分解,LU分解
相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x ...
- 矩阵LU分解
有如下方程组 ,当矩阵 A 各列向量互不相关时, 方程组有位移解,可以使用消元法求解,具体如下: 使用消元矩阵将 A 变成上三角矩阵 , , 使用消元矩阵作用于向量 b,得到向量 c,, , Ax=b ...
- matlab 求解线性方程组之LU分解
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解 ...
- LU分解(2)
接着上次LU分解的讲解,这次给出使用不同的计算LU分解的方法,这种方法称为基于GaxPy的计算方法.这里需要了解lapapck中的一些函数.lapack中有一个函数名为gaxpy,所对应的矩阵计算公式 ...
- 矩阵LU分解程序实现(Matlab)
n=4;%确定需要LU分解的矩阵维数 %A=zeros(n,n); L=eye(n,n);P=eye(n,n);U=zeros(n,n);%初始化矩阵 tempU=zeros(1,n);tempP=z ...
- 计算方法 -- 解线性方程组直接法(LU分解、列主元高斯消元、追赶法)
#include <iostream> #include <cstdio> #include <algorithm> #include <cstdlib> ...
随机推荐
- Java中锁分类
锁的分类大致如下:公平锁/非公平锁可重入锁/不可重入锁独享锁/共享锁乐观锁/悲观锁分段锁 1.公平锁/非公平锁公平锁就是严格按照线程启动的顺序来执行的,不允许其他线程插队执行的:而非公平锁是允许插队的 ...
- 多线程读者写者问题--用QT实现
先把代码贴上来,有时间再整理吧..因为工作中用Qt,所以用Qt实现的....刚上班,,忙! 三种方法,读者优先,写者优先和公平竞争.. 读者优先 #include <QCoreApplicati ...
- Jmeter - 测试 http 接口
前言: 本文主要针对http接口进行测试,使用Jmeter工具实现. Jmter工具设计之初是用于做性能测试的,它在实现对各种接口的调用方面已经做的比较成熟,因此,本次直接使用Jmeter工具来完成对 ...
- Jenkins持续集成学习-Windows环境进行.Net开发3
目录 Jenkins持续集成学习-Windows环境进行.Net开发3 目录 前言 目标 优化nuget包生成流程 自动触发构建 Jenkins定时轮询触发 SVN客户端钩子触发 SVN服务器钩子触发 ...
- C# ListView解读
一.ListView类 1.常用的基本属性: (1)FullRowSelect:设置是否行选择模式.(默认为false) 提示:只有在Details视图该属性才有意义. (2) GridLines:设 ...
- [APC001] D Forest
Description 给定\(n\)个点\(m\)条边组成的森林,每个点有权值\(a_i\).现在需要将森林连成一棵树,选择两个点\(i,j\)连边的代价是\(a_i+a_j\),每个点最多被选择连 ...
- JavaWeb总结(国税)
一.JavaWeb示例 1.1.Servlet Hello World&IDEA创建第一个Servlet 新建项目 选择maven 组织名与项目名 位置,完成 允许自动导入包 添加框架支持,变 ...
- 在C#中,如何连接已加密的Sqlite数据库
对数据加密分两种,一种是对数据库本身进行加密,另一种是对数据表中的数据进行加密, 如果SQLite数据库加密,我这里使用的一个管理工具叫SQLiteDeveloper,如下就可以加密数据库 , 如果在 ...
- ILSpy
今日为找泛型序列的一个Select方法源码,就去找了个ILSpy反编译工具. 工具下载地址:http://www.fishlee.net/service/softarchive/57,一般选择较新的. ...
- Ocelot中文文档-Route
路由(Routing) Ocelot主要功能是接收即将发来的请求并转发它们至下游服务.与此同时,以另一个http请求的形式(在将来这可能是任何传输的机制) Ocelot将一个请求的路由描述为另一个路由 ...