作者:凯鲁嘎吉 - 博客园
http://www.cnblogs.com/kailugaji/

三、实验程序

五、解答(按如下顺序提交电子版)

1.(程序)

(1)LU分解源程序:

function [l,u]=lu12(a,n)
for k=1:n-1
for i=k+1:n
a(i,k)=a(i,k)/a(k,k);
for j=k+1:n
a(i,j)=a(i,j)-a(i,k)*a(k,j);
end
end
end
l=eye(n);
u=zeros(n,n);
for k=1:n
for i=k:n
u(k,i)=a(k,i);
end
end
for k=1:n
for j=1:k-1
l(k,j)=a(k,j);
end
end

(2)直接三角分解法源程序:

function [a,l,u,y,x]=direct_triangle(a,b,n)
%a为N*N矩阵,b为n*1列向量
for k=1:n-1
for i=k+1:n
a(i,k)=a(i,k)/a(k,k);
for j=k+1:n
a(i,j)=a(i,j)-a(i,k)*a(k,j);
end
end
end
l=eye(n);
u=zeros(n,n);
for k=1:n
for i=k:n
u(k,i)=a(k,i);
end
end
for k=1:n
for j=1:k-1
l(k,j)=a(k,j);
end
end
y=ones(n,1);
x=ones(n,1);
y(1,1)=b(1,1);
for i=2:n
s=0;
for k=1:i-1
s=s+l(i,k)*y(k,1);
end
y(i,1)=b(i,1)-s;
end x(n,1)=y(n,1)/u(n,n);
for j=n-1:-1:1
s1=0;
for k1=j+1:n
s1=s1+u(j,k1)*x(k1,1);
end
x(j,1)=(y(j,1)-s1)/u(j,j);
end

2.(运算结果)

(1)求一个4阶矩阵的LU分解。

>> a=[10,7,8,7;7,5,6,5;8,6,10,9;7,5,9,10];
>> [l,u]=lu12(a,4) l = 1.0000 0 0 0
0.7000 1.0000 0 0
0.8000 4.0000 1.0000 0
0.7000 1.0000 1.5000 1.0000 u = 10.0000 7.0000 8.0000 7.0000
0 0.1000 0.4000 0.1000
0 0 2.0000 3.0000
0 0 0 0.5000

>>  a=[10 7 8 7;7 5 6 5;8 6 10 9;7 5 9 10];b=[32 23 33 31]';
>> [a,l,u,y,x]=direct_triangle(a,b,4) a = 10.0000 7.0000 8.0000 7.0000
0.7000 0.1000 0.4000 0.1000
0.8000 4.0000 2.0000 3.0000
0.7000 1.0000 1.5000 0.5000 l = 1.0000 0 0 0
0.7000 1.0000 0 0
0.8000 4.0000 1.0000 0
0.7000 1.0000 1.5000 1.0000 u = 10.0000 7.0000 8.0000 7.0000
0 0.1000 0.4000 0.1000
0 0 2.0000 3.0000
0 0 0 0.5000 y = 32.0000
0.6000
5.0000
0.5000 x = 1.0000
1.0000
1.0000
1.0000

比如,希尔伯特矩阵就是一个病态矩阵,在方程组问题求解之前,可以先判断其条件数是否较大。

源程序:hilbert.m:

function [A,cond1]=hilbert(k)
format rat
A=zeros(k,k);
for m=1:k
for n=1:k
A(m,n)=1/(m+n-1);
end
end
cond1=cond(A,inf);

运行结果:

>> [A,cond1]=hilbert(3)

A =

       1              1/2            1/3
1/2 1/3 1/4
1/3 1/4 1/5 cond1 = 748
>> [A,cond1]=hilbert(4) A = 1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7 cond1 = 28375
>> [A,cond1]=hilbert(5) A = 1 1/2 1/3 1/4 1/5
1/2 1/3 1/4 1/5 1/6
1/3 1/4 1/5 1/6 1/7
1/4 1/5 1/6 1/7 1/8
1/5 1/6 1/7 1/8 1/9 cond1 = 943656

从结果可见希尔伯特矩阵是一个病态矩阵,用一般的直接法和迭代法会有较大的误差,甚至严重失真。

MATLAB矩阵的LU分解及在解线性方程组中的应用的更多相关文章

  1. 线性代数笔记10——矩阵的LU分解

    在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析 ...

  2. 矩阵LU分解的MATLAB与C++实现

    一:矩阵LU分解 矩阵的LU分解目的是将一个非奇异矩阵\(A\)分解成\(A=LU\)的形式,其中\(L\)是一个主对角线为\(1\)的下三角矩阵:\(U\)是一个上三角矩阵. 比如\(A= \beg ...

  3. 矩阵LU分解分块算法实现

    本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去 ...

  4. 矩阵分解---QR正交分解,LU分解

    相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x ...

  5. 矩阵LU分解

    有如下方程组 ,当矩阵 A 各列向量互不相关时, 方程组有位移解,可以使用消元法求解,具体如下: 使用消元矩阵将 A 变成上三角矩阵 , , 使用消元矩阵作用于向量 b,得到向量 c,, , Ax=b ...

  6. matlab 求解线性方程组之LU分解

    线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解 ...

  7. LU分解(2)

    接着上次LU分解的讲解,这次给出使用不同的计算LU分解的方法,这种方法称为基于GaxPy的计算方法.这里需要了解lapapck中的一些函数.lapack中有一个函数名为gaxpy,所对应的矩阵计算公式 ...

  8. 矩阵LU分解程序实现(Matlab)

    n=4;%确定需要LU分解的矩阵维数 %A=zeros(n,n); L=eye(n,n);P=eye(n,n);U=zeros(n,n);%初始化矩阵 tempU=zeros(1,n);tempP=z ...

  9. 计算方法 -- 解线性方程组直接法(LU分解、列主元高斯消元、追赶法)

    #include <iostream> #include <cstdio> #include <algorithm> #include <cstdlib> ...

随机推荐

  1. RocketMQ系列实战

    RocketMQ实战(一)RocketMQ实战(二)RocketMQ实战(三):分布式事务RocketMQ实战(四)

  2. mysql表分区实战

    一,什么是数据库分区以mysql为例,mysql数据库中的数据是以文件的形势存在磁盘上的,默认放在/mysql/data下面 (可以通过my.cnf中的datadir来查看),一张表主要对应着三个文件 ...

  3. zmq Poller

    1.注册socket到poller中 poller = zmq.Poller() poller.register(frontend, zmq.POLLIN) # receive worker mess ...

  4. JVM笔记11-类加载器和OSGI

    一.JVM 类加载器: 一个类在使用前,如何通过类调用静态字段,静态方法,或者new一个实例对象,第一步就是需要类加载,然后是连接和初始化,最后才能使用. 类从被加载到虚拟机内存中开始,到卸载出内存为 ...

  5. 这次聊聊Promise对象

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由前端林子发表于云+社区专栏 Promise是CommonJS提出的一种规范,在ES6中已经原生支持Promise对象,非ES6环境可以 ...

  6. Mongodb 命令清单

    一.数据库常用命令 # 切换/创建数据库 PRIMARY> use yourDB; #当创建一个集合(table)的时候会自动创建当前数据库# 查询所有数据库 PRIMARY> show ...

  7. JavaWeb学习 (四)————Http协议

    一.什么是HTTP协议 HTTP是hypertext transfer protocol(超文本传输协议)的简写,它是TCP/IP协议的一个应用层协议,用于定义WEB浏览器与WEB服务器之间交换数据的 ...

  8. [JZOJ5837] Omeed

    Description Solution 有两种做法 一种是线段树维护一次方程系数,一种是线段树维护矩阵 准备都写一写 维护系数 首先把式子推出来 \[CS=B\times \sum\limits_{ ...

  9. Apollo源码阅读笔记(一)

    Apollo源码阅读笔记(一) 先来一张官方客户端设计图,方便我们了解客户端的整体思路. 我们在使用Apollo的时候,需要标记@EnableApolloConfig来告诉程序开启apollo配置,所 ...

  10. kafka安装与简单使用

    一.kafka安装 安装是非常简单的,现在推荐安装0.8的版本,这个版本是非常稳定的,而且公司里面也多用此版本. 简单的安装: 这个是我使用的版本,kafka_2.11-0.8.2.2.tgz 直接t ...