http://cs231n.github.io/neural-networks-1

https://arxiv.org/pdf/1603.07285.pdf

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

Applied Deep Learning - Part 1: Artificial Neural Networks

https://medium.com/towards-data-science/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6

http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
作者:zhwhong
链接:http://www.jianshu.com/p/182baeb82c71
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

[斯坦福CS231n课程整理] Convolutional Neural Networks for Visual Recognition(附翻译,作业)

http://www.jianshu.com/p/182baeb82c71

CS231n Winter 2016 Lecture 1 Introduction and Historical Context-F ...

https://www.youtube.com/watch?v=2uiulzZxmGg

http://cs231n.stanford.edu/syllabus.html

http://cs231n.stanford.edu/2016/syllabus

http://cs231n.stanford.edu/

http://colah.github.io/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

  1. karpathy/neuraltalk2: Efficient Image Captioning code in Torch, Examples
  2. Shaoqing Ren, et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, 2015, arXiv:1506.01497
  3. Neural Network Architectures, Eugenio Culurciello’s blog
  4. CS231n Convolutional Neural Networks for Visual Recognition, Stanford
  5. Clarifai / Technology
  6. Machine Learning is Fun! Part 3: Deep Learning and Convolutional Neural Networks
  7. Feature extraction using convolution, Stanford
  8. Wikipedia article on Kernel (image processing)
  9. Deep Learning Methods for Vision, CVPR 2012 Tutorial
  10. Neural Networks by Rob Fergus, Machine Learning Summer School 2015
  11. What do the fully connected layers do in CNNs?
  12. Convolutional Neural Networks, Andrew Gibiansky
  13. A. W. Harley, “An Interactive Node-Link Visualization of Convolutional Neural Networks,” in ISVC, pages 867-877, 2015 (link). Demo
  14. Understanding Convolutional Neural Networks for NLP
  15. Backpropagation in Convolutional Neural Networks
  16. A Beginner’s Guide To Understanding Convolutional Neural Networks
  17. Vincent Dumoulin, et al, “A guide to convolution arithmetic for deep learning”, 2015, arXiv:1603.07285
  18. What is the difference between deep learning and usual machine learning?
  19. How is a convolutional neural network able to learn invariant features?
  20. A Taxonomy of Deep Convolutional Neural Nets for Computer Vision
  21. Honglak Lee, et al, “Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations” (link)

https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html

http://online.cambridgecoding.com/notebooks/eWReNYcAfB/implementing-logistic-regression-classifier-trained-by-gradient-descent-4

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

http://deeplearning.net/tutorial/lenet.html

http://cs231n.github.io/convolutional-networks/

http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/

https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html

http://cs.stanford.edu/people/karpathy/convnetjs//demo/classify2d.html

斯坦福神经网络视频

https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv

http://cs231n.github.io/convolutional-networks/

深层学习为何要“Deep”(上)
https://zhuanlan.zhihu.com/p/22888385
深层学习为何要“Deep”(下)
https://zhuanlan.zhihu.com/p/24245040

熵与生命

https://yjango.gitbooks.io/superorganism/content/shang_yu_sheng_ming.html

《超智能体》作者讲述深层神经网络设计理念

https://v.douyu.com/show/j4xq3WDO3pRMLGNz

CNN(卷积神经网络)、RNN(循环神经网络)、DNN

https://www.zhihu.com/question/34681168

度强化学习(Deep Reinforcement Learning)入门:RL base & DQN-DDPG-A3C introduction

https://zhuanlan.zhihu.com/p/25239682

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://zhuanlan.zhihu.com/p/22888385

https://www.zhihu.com/question/22553761

https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=402032673&idx=1&sn=d7e636b6d033cbcf8a74dfaf710e9ccf#rd

http://wiki.jikexueyuan.com/project/deep-learning/recognition-digit.html

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

http://cs231n.github.io/convolutional-networks/

https://github.com/rasbt/python-machine-learning-book/tree/master/faq

台湾

http://www.jianshu.com/p/c30f7c944b66

为什么神经网络牛逼?

https://www.zhihu.com/question/41667903/answer/130691120

https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/

http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

https://github.com/rasbt/python-machine-learning-book/tree/master/faq

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471

http://cs231n.github.io/convolutional-networks/

http://www.jianshu.com/p/1afda7000d8e

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

http://deeplearning.net/tutorial/lenet.html

http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/

http://blog.163.com/lipse_huang/blog/static/19165754520133954138888/

https://en.wikipedia.org/wiki/Convolutional_neural_network

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

https://www.analyticsvidhya.com/blog/2017/06/architecture-of-convolutional-neural-networks-simplified-demystified/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/classification/

http://cs231n.github.io/linear-classify/

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721

https://medium.com/@ageitgey/machine-learning-is-fun-part-2-a26a10b68df3

Hacker's guide to Neural Networks

http://karpathy.github.io/neuralnets/

Deformable-ConvNets

https://www.zhihu.com/question/57493889

https://github.com/msracver/Deformable-ConvNets

CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM的更多相关文章

  1. Keras(四)CNN 卷积神经网络 RNN 循环神经网络 原理及实例

    CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras. ...

  2. Recurrent Neural Networks(RNN) 循环神经网络初探

    1. 针对机器学习/深度神经网络“记忆能力”的讨论 0x1:数据规律的本质是能代表此类数据的通用模式 - 数据挖掘的本质是在进行模式提取 数据的本质是存储信息的介质,而模式(pattern)是信息的一 ...

  3. CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

    https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...

  4. 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别

    深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...

  5. TensorFlow框架(6)之RNN循环神经网络详解

    1. RNN循环神经网络 1.1 结构 循环神经网络(recurrent neural network,RNN)源自于1982年由Saratha Sathasivam 提出的霍普菲尔德网络.RNN的主 ...

  6. 4.5 RNN循环神经网络(recurrent neural network)

     自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取: https://www.cnblogs.com/bclshuai/p/11380657.html 1.1  RNN循环神经网络 ...

  7. 关于 RNN 循环神经网络的反向传播求导

    关于 RNN 循环神经网络的反向传播求导 本文是对 RNN 循环神经网络中的每一个神经元进行反向传播求导的数学推导过程,下面还使用 PyTorch 对导数公式进行编程求证. RNN 神经网络架构 一个 ...

  8. CNN(卷积神经网络)、RNN(循环神经网络)和DNN(深度神经网络)

    本文转载修改自:知乎-科言君 感知机(perceptron) 神经网络技术起源于上世纪五.六十年代,当时叫感知机(perceptron),拥有输入层.输出层和一个隐含层.输入的特征向量通过隐含层变换达 ...

  9. 神经网络6_CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程,QQ:231469242) https://study.163.com/course/introduction.htm?courseId ...

随机推荐

  1. Linux安装Elasticsearch

    本文介绍Linux环境如何安装Elasticsearch. 本文环境是在腾讯云服务器CentOS7.2搭建的,JDK1.8,elasticsearch-5.4.2. 1 安装JDK 网上教程很多,也可 ...

  2. Pandas 学习记录(一)

    1.DataFrame 按照列和按照行进行索引数据 按照列索引 df[’column_name’] 按照行索引 df.loc[’row_key’] 或 df.iloc[index] 2.先行后列索引单 ...

  3. BZOJ.3227.[SDOI2008]红黑树tree(树形DP 思路)

    BZOJ orz MilkyWay天天做sxt! 首先可以树形DP:\(f[i][j][0/1]\)表示\(i\)个点的子树中,黑高度为\(j\),根节点为红/黑节点的最小红节点数(最大同理). 转移 ...

  4. 第一篇随笔 - Hello world!

    第一篇随笔 - Hello world! 第一篇随笔 - Hello world! 第一篇随笔 - Hello world! 第一篇随笔 - Hello world! 第一篇随笔 - Hello wo ...

  5. JS垃圾收集机制

    JS 具有自动垃圾回收机制,不需要像C++/C等语言去手动跟踪内存使用情况. 垃圾收集方式: 1.标记清除: 垃圾收集器在运行时给存储在内存中的所有变量都加上标记,然后,它会去掉环境中的变量,以及被环 ...

  6. .net 相关性能计数器丢失问题解决方案

    1.开始运行:cmd 2.在cmd窗口中执行下面命令: cd c:\windows\system32 lodctr /R 执行完上面命令,会提示:“信息: 成功地从系统备份存储中重建性能计数器设置” ...

  7. MyBatis初探

    首先下载MyBatis jar包, 可以去MyBatis中文官网下载 项目中导入MyBatis jar包和JDBC jar包(此处用的MySQL) 新建conf.xml 内容如下: <?xml ...

  8. 概率图模型 基于R语言 这本书中的第一个R语言程序

    概率图模型 基于R语言 这本书中的第一个R语言程序 prior <- c(working =0.99,broken =0.01) likelihood <- rbind(working = ...

  9. svn更换ip地址,重新地位

    问题描述 在解决问题之前,先描述一下问题发生的场景. 小组合作开发,SVN服务器采用的是VisualSVN Server,客户端是TortoiseSVN,在VS上安装了VisualSVN插件.开发大约 ...

  10. 4、css属性操作

    前面说的主要是css的使用规则和选择器等,这篇主要讲解css的具体使用. 本篇导航: css text 背景属性 边框属性 列表属性 dispaly属性 外边距(margine)和内边距(paddin ...