【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)

题面

BZOJ

洛谷

题解

先看懂这题目在干什么。

首先BZOJ上面的题面没有图,换到洛谷看题就有图了。

不难发现都相邻的两个异色棋子放在一起的时候,此时的先手无论怎么动,后手直接把棋子靠上去,这样子一定是先手先无法移动。即先手必败。

把相邻的黑白棋子配对,不难发现这个玩意就是一个\(NimK\)游戏了。

考虑\(NimK\)游戏是怎么来的,即把每堆石子转为二进制之后,检查是否每一位上的棋子数量都是\(K+1\)的倍数,如果是,则先手必败。否则先手必胜。

那么这样子可以\(dp\)了。

设\(f[i][j]\)表示当前考虑到了二进制上的第\(i\)位,总共放了\(j\)个石子的先手必败的方案数。

这样子用总的放置方案数减去必败的方案数就可以得到必胜的方案数了。

#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MAX 10010
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int jc[MAX],jv[MAX],inv[MAX];
int C(int n,int m){if(m>n)return 0;return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int f[15][MAX],n,K,d,ans;
int main()
{
scanf("%d%d%d",&n,&K,&d);
n-=K;K>>=1;jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=1;i<=n+K+K;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<=n+K+K;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n+K+K;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
f[0][0]=1;
for(int j=0;j<=13;++j)
for(int i=0;i<=n;++i)
if(f[j][i])
for(int k=0;k<=K;k+=d+1)
if(i+(1<<j)*k<=n)add(f[j+1][i+(1<<j)*k],1ll*f[j][i]*C(K,k)%MOD);
for(int i=0;i<=n;++i)add(ans,1ll*f[14][i]*C(n-i+K,K)%MOD);
ans=(C(n+2*K,2*K)+MOD-ans)%MOD;
printf("%d\n",ans);
return 0;
}

【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)的更多相关文章

  1. BZOJ2281:[SDOI2011]黑白棋(博弈论,组合数学,DP)

    Description 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...

  2. luoguP2490 [SDOI2011]黑白棋 博弈论 + 动态规划

    博弈部分是自己想出来的,\(dp\)的部分最后出了点差错QAQ 从简单的情况入手 比如\(k = 2\) 如果有这样的局面:$\circ \bullet $,那么先手必输,因为不论先手怎样移动,对手都 ...

  3. [BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)

    2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec  Memory Limit: 512 MBSubmit: 626  Solved: 390[Submit][Status][ ...

  4. BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏

    题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...

  5. BZOJ 2281 Luogu P2490 [SDOI2011]黑白棋 (博弈论、DP计数)

    怎么SDOI2011和SDOI2019的两道题这么像啊..(虽然并不完全一样) 题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?i ...

  6. bzoj2281 [Sdoi2011]黑白棋

    一眼$nimk$游戏,后来觉得不对劲,看了黄学长博客发现真的不是$nimk$. 就当是$nimk$做吧,那么我们要保证每一位上一的个数都是$d+1$的倍数. $dp$:$f[i][j]$表示从低到高第 ...

  7. BZOJ2281 [SDOI2011]黑白棋 【dp + 组合数】

    题目 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色棋子 ...

  8. Bzoj 2281 [Sdoi2011]黑白棋 题解

    2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec  Memory Limit: 512 MBSubmit: 592  Solved: 362[Submit][Status][ ...

  9. P2490 [SDOI2011]黑白棋

    P2490 [SDOI2011]黑白棋 题意 一个 \(1*n\) 的棋盘上,A 可以移动白色棋子,B 可以移动黑色的棋子,其中白色不能往左,黑色不能往右.他们每次操作可以移动 1 到 \(d\) 个 ...

随机推荐

  1. 数列分块入门九题(三):LOJ6283~6285

    Preface 最后一题我一直觉得用莫队是最好的. 数列分块入门 7--区间乘法,区间加法,单点询问 还是很简单的吧,比起数列分块入门 7就多了个区间乘. 类似于线段树,由于乘法的优先级高于加法,因此 ...

  2. SDP服务搜索流程源码分析

    BREDR的设备 在进行配对完成之后,进行;连接之前都要进行服务的搜索,服务搜索走的流程是SDP,这篇文章就分析一下,bluedroid中SDP的代码流程,我们从配对完成的回调函数开始分析: /*** ...

  3. ORA-12638:Credential retrieval failed(身份证明检索失败)解决方法

    版本:oracle 11g 解决方法: 在sqlnet.ora中设置SQLNET.AUTHENTICATION_SERVICES= 0.本人亲自验证,可以解决此问题. 网上说设置SQLNET.AUTH ...

  4. dpkg:错误:正在解析文件 '/var/lib/dpkg/updates/0014' 第 0 行附近:在字段名 #padding 中有换行符问题的解决方法

    解决方案如下: sudo rm /var/lib/dpkg/updates/* sudo apt-get update python@ubuntu:~/Desktop/_Welcome_.jpg.ex ...

  5. C_数据结构_走迷宫

    #include <stdio.h> #include <conio.h> #include <windows.h> #include <time.h> ...

  6. Beta版发布说明

    我们的作品“校友聊”软件的最终版本于6月19日最终发布了,下面我们将对自己的产品进行介绍. 在使用之前,首先要进行用户注册,用户可以自行设置自己的账号,姓名,密码,签名,头像等信息,头像信息也可以在文 ...

  7. 同步手绘板——android端取色

    作为绘图软件,颜色的选取必不可少,在刚开始取色时,所选颜色和显示颜色始终不一致,比如选取白色显示绿色,在这个问题上消耗了太多的时间,后来发现是比例问题,通过修改实现恰当的取色.

  8. 结对项目 https://github.com/quchengyu/jiedui/tree/quchengyu-patch-1

    所选项目名称:文本替换      结对人:傅艺伟 github地址 : https://github.com/quchengyu/jiedui/tree/quchengyu-patch-1 用一个新字 ...

  9. The import * cannot be resolved

    背景 使用eclipse jee做练习的时候,下载了老师的项目源码.考虑到老师用的时myeclipse,目录结构略有不同,所有不想直接导入项目,又考虑到,可能环境不一样,会出现这样那样的问题,所以我的 ...

  10. PHP文件下载功能实现

    客户端的浏览器通过HTTP协议可以实现文件下载: 方法一: 能提供用户下载的最简单的方法就是使用一个<a></a>标签,比如在页面中添加这么一行代码 <a href=&q ...