时隔多年终于把这道题锅过了

数据范围显然用搜索剪枝状压dp。

可以记还有哪些点没到(或者已到了哪些点)、我们最深已到的是哪些点、这些点的深度是多少,然后一层一层地往下推。

但其实是没必要记最深的那一层的,只要强行装作每次更新都是用最深的深度更新就可以。这样的话,虽然会有很多情况偏大,但是能正确更新的情况其实是都已经包括了。

因为你如果想以当前状态去更新,但用的还不是最深一层的点的话,干脆就可以在之前你想用那个点处于最后一层的时候去更新。

代码写的很捉急..最后常数也很捉急...

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<cmath>
#include<ctime>
#define LL long long int
#define inf 0x3f3f3f3f
using namespace std;
const int maxs=,maxn=,maxm=; LL rd(){
LL x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int eg[maxm*][],egh[maxn],ect;
int f[maxn][maxs],dis0[maxs][maxn],dis[maxs][maxs],bin[maxn];
int N,M; inline void adeg(int a,int b,int v){
eg[ect][]=b;eg[ect][]=egh[a];eg[ect][]=v;egh[a]=ect++;
for(int i=;i<bin[N+];i++) if((bin[a]&i) && !(bin[b]&i)) dis0[i][b]=min(dis0[i][b],v);
} void dfs(int x,int y,int s,int e){
if(x>N) dis[s][e]=y;
else{
if(dis0[s][x]<=) dfs(x+,y+dis0[s][x],s,e|bin[x]);
dfs(x+,y,s,e);
}
} int main(){
int i,j,k;
N=rd(),M=rd();
memset(egh,-,sizeof(egh));memset(dis,,sizeof(dis));
memset(dis0,,sizeof(dis0));memset(f,,sizeof(f));
for(i=,j=;i<=N+;i++,j<<=) bin[i]=j;
for(i=;i<=M;i++){
int a=rd(),b=rd(),c=rd();
adeg(a,b,c);adeg(b,a,c);
}
for(i=;i<bin[N+];i++) dfs(,,i,);
for(i=;i<=N;i++) f[][bin[i]]=;
for(i=;i<N;i++){
for(j=;j<bin[N+];j++){
if(f[i][j]>=9e7) continue;
for(k=;k<bin[N+];k++){
if(dis[j][k]>) continue;
f[i+][j|k]=min(f[i+][j|k],f[i][j]+i*dis[j][k]);
}
}
}int ans=0x3f3f3f3f;
for(i=;i<=N;i++) ans=min(f[i][(<<N)-],ans);
printf("%d\n",ans);
return ;
}

NOIp2017D2T2(luogu3959) 宝藏 (状压dp)的更多相关文章

  1. [NOIP2017]宝藏 状压DP

    [NOIP2017]宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖 ...

  2. P3959 宝藏 状压dp

    之前写了一份此题关于模拟退火的方法,现在来补充一下状压dp的方法. 其实直接在dfs中状压比较好想,而且实现也很简单,但是网上有人说这种方法是错的...并不知道哪错了,但是就不写了,找了一个正解. 正 ...

  3. [Luogu P3959] 宝藏 (状压DP+枚举子集)

    题面 传送门:https://www.luogu.org/problemnew/show/P3959 Solution 这道题的是一道很巧妙的状压DP题. 首先,看到数据范围,应该状压DP没错了. 根 ...

  4. 计蒜客 宝藏 (状压DP)

    链接 : Here! 思路 : 状压DP. 开始想直接爆搜, T掉了, 然后就采用了状压DP的方法来做. 定义$f[S]$为集合$S$的最小代价, $dis[i]$则记录第$i$个点的"深度 ...

  5. 洛谷$P3959\ [NOIp2017]$ 宝藏 状压$dp$

    正解:状压$dp$ 解题报告: 传送门$QwQ$ $8102$年的时候就想搞这题了,,,$9102$了$gql$终于开始做这题了$kk$ 发现有意义的状态只有当前选的点集和深度,所以设$f_{i,j} ...

  6. loj2318 「NOIP2017」宝藏[状压DP]

    附带其他做法参考:随机化(模拟退火.爬山等等等)配合搜索剪枝食用. 首先题意相当于在图上找一颗生成树并确定根,使得每个点与父亲的连边的权乘以各自深度的总和最小.即$\sum\limits_{i}dep ...

  7. Luogu 3959 [NOIP2017] 宝藏- 状压dp

    题解 真的想不到这题状压的做法...听说还有跑的飞快的模拟退火,要是现场做绝对滚粗QAQ. 不考虑深度,先预处理出 $pt_{i, S}$ 表示让一个不属于 集合 $S$ 的 点$i$ 与点集 $S$ ...

  8. LOJ P3959 宝藏 状压dp noip

    https://www.luogu.org/problemnew/show/P3959 考场上我怎么想不出来这么写的,状压白学了. 直接按层次存因为如果某个点在前面存过了则肯定结果更优所以不用在意各点 ...

  9. Luogu3959 NOIP2017 宝藏 状压DP

    题目传送门:https://www.luogu.org/problemnew/show/P3959 题意:给出一个有$N$个点的图,求其中的一个生成树(指定一个点为根),使得$\sum\limits_ ...

随机推荐

  1. [Spark][Python]DataFrame中取出有限个记录的例子

    [Spark][Python]DataFrame中取出有限个记录的例子: sqlContext = HiveContext(sc) peopleDF = sqlContext.read.json(&q ...

  2. sklearn学习笔记之简单线性回归

    简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误 ...

  3. 一次线上redis实例cpu占用率过高问题优化(转)

    前情提要: 最近接了大数据项目的postgresql运维,刚接过来他们的报表系统就出现高峰期访问不了的问题,报表涉及实时数据和离线数据,离线读pg,实时读redis.然后自然而然就把redis也挪到我 ...

  4. 我的devops实践经验分享一二

    前言 随着系统越来越大,开发人员.站点.服务器越来越多,微服务化推进,......等等原因,实现自动化的devops越来越有必要. 当然,真实的原因是,在团队组建之初就预见到了这些问题,所以从一开始就 ...

  5. C#抽象类跟接口

    抽象类描述的是一个什么东西,属性. 抽象类是对类的抽象,描述是什么  抽象类,继承后重写接口描述的是他做什么,行为.接口是对行为的抽象,描述做什么  ,进行继承后实行接口

  6. Linux df du 命令

    df 命令 检查磁盘空间占用情况(并不能查看某个目录占用的磁盘大小). 命令格式:df [option] -h 以容易理解的格式(给人看的格式)输出文件系统分区使用情况,例如 10kB.10MB.10 ...

  7. mysql下批量清空某个库下的所有表(库不要删除,保留空库)

    总所周知,mysql下要想删除某个库下的某张表,只需要切换到该库下,执行语句"drop table tablename"即可删除!但若是该库下有成百上千张表,要是再这样一次次执行d ...

  8. “北航学堂”M2阶段postmortem

    “北航学堂”M2阶段postmortem 设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 这个问题我们在M1阶段的时候就已经探讨的比较明确了,就是 ...

  9. 网络:OSPF理解

    OSPF(开放最短路径优先)协议使用Dijkstra算法,常见的版本有:OSPFv2.OSPFv3等.以下主要介绍OSPFv2,OSPFv3是面向IPv6的且不兼容IPv4. 1.工作过程: 1)每台 ...

  10. Python学习笔记 -- 第六章 文件操作

    I/O编程 在磁盘上读写文件的功能都是由操作系统提供的,现代操作系统不允许普通的程序直接操作磁盘,所以,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这 ...