一、原理简介

边缘检测原理 - Sobel, Laplace, Canny算子

X方向Sobel算子

-1 -2 -1
0 0 0
1 2 1

Y方向Sobel算子

-1 0 1
-2 0 2
-1 0 1

Laplace算子

1 1 1
1 -8 1
1 1 1

Canny 边缘检测算子

高斯滤波器平滑图像

一阶差分偏导计算梯度值和方向

对梯度值不是极大值的地方进行抑制

用双阈值连接图上的联通点

通俗说一下,
1.用高斯滤波主要是去掉图像上的噪声。
2.计算一阶差分,OpenCV 源码中也是用 sobel 算子来算的。
3.算出来的梯度值,把不是极值的点,全部置0,去掉了大部分弱的边缘。所以图像边缘会变细。
4.双阈值 t1, t2, 是这样的,t1 <= t2
大于 t2 的点肯定是边缘
小于 t1 的点肯定不是边缘
在 t1, t2 之间的点,通过已确定的边缘点,发起8领域方向的搜索(广搜),图中可达的是边缘,不可达的点不是边缘。
最后得出 canny 边缘图。

二、代码演示

有关函数 convertScaleAbs,文档解释如下,不过这里不使用其放缩功能

1、Sobel 边缘检测算子

由于需要指定横向纵向,所以分两步进行,最后组合即可,

	cv::Mat image = cv::imread("test.jpg");
cv::imshow("原图", image);
cv::Mat gray;
cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY); cv::Mat contours;
cv::Mat sobelX, sobelY;
cv::Sobel(
image,
sobelX,
CV_16S, // 图像depth,输入8U,输出16S防止外溢
1, 0, // xorder, yorder
3, // 内核尺寸
1, 1 // 输出结果乘alpha加beta
);
cv::convertScaleAbs(sobelX, sobelX);
cv::imshow("Sobel_X", sobelX);
cv::Sobel(
image,
sobelY,
CV_8U,
0, 1,
3,
1, 1
);
cv::convertScaleAbs(sobelY, sobelY);
cv::imshow("Sobel_Y", sobelY);
cv::addWeighted(sobelX, 0.5, sobelY, 0.5, 0, contours);
cv::imshow("Sobel", contours);

XY单方向输出如下,

两这合并如下,

2、Laplace 边缘检测算子

	// cv::Mat image = cv::imread("skin.jfif");
cv::Mat image = cv::imread("test.jpg");
cv::imshow("原图", image);
cv::Mat gray;
cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY); cv::Mat contours;
cv::GaussianBlur(gray, gray, cv::Size(5, 5), 1.5);
cv::Laplacian(
gray,
contours,
CV_16S,
3, // 内核尺寸
1, 0 // 放缩因子
); cv::convertScaleAbs(contours, contours);
cv::imshow("Laplacian", contours);

3、Canny 边缘检测算子

	// cv::Mat image = cv::imread("skin.jfif");
cv::Mat image = cv::imread("test.jpg");
cv::imshow("原图", image);
cv::Mat gray;
cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY); cv::Mat contours;
cv::GaussianBlur(gray, gray, cv::Size(5, 5), 1.5);
cv::Canny(
gray,
contours,
10, // 低阈值
150 // 高阈值
);
cv::imshow("Canny", contours);

高低阈值参数的设定对于检测效果影响很大,一般来说低阈值检测出十分琐碎的边缘,且设置的越低检测出来的越多,而高阈值这决定了保留多少边缘,对于上图,我们将高阈值下调至50查看一下效果,会发现保留细节数目增加了

附录、函数总览

void edge() {
// cv::Mat image = cv::imread("skin.jfif");
cv::Mat image = cv::imread("test.jpg");
cv::imshow("原图", image);
cv::Mat gray;
cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY); cv::Mat contours;
cv::GaussianBlur(gray, gray, cv::Size(5, 5), 1.5);
cv::Canny(
gray,
contours,
10, // 低阈值
150 // 高阈值
);
cv::imshow("Canny", contours); cv::Laplacian(
gray,
contours,
CV_16S,
3, // 内核尺寸
1
);
cv::Mat abs_dst;
cv::convertScaleAbs(contours, contours);
cv::imshow("Laplacian", contours); cv::Mat sobelX, sobelY;
cv::Sobel(
image,
sobelX,
CV_16S, // 图像depth,输入8U,输出16S防止外溢
1, 0, // xorder, yorder
3, // 内核尺寸
1, 1 // 输出结果乘alpha加beta
);
cv::convertScaleAbs(sobelX, sobelX);
cv::imshow("Sobel_X", sobelX);
cv::Sobel(
image,
sobelY,
CV_8U,
0, 1,
3,
1, 1
);
cv::convertScaleAbs(sobelY, sobelY);
cv::imshow("Sobel_Y", sobelY);
cv::addWeighted(sobelX, 0.5, sobelY, 0.5, 0, contours);
cv::imshow("Sobel", contours);
}

『OpenCV3』滤波器边缘检测的更多相关文章

  1. 『OpenCV3』滤波器实现及使用滤波器降噪

    一.滤波器实现 我们实现这样一个基于拉普拉斯算子的滤波器核心,并使用它进行滤波,这可以做到锐化图像的效果, 0 -1 0 -1 5 -1 0 -1 0 首先我们完全手动的进行滤波,依赖指针操作, vo ...

  2. 『OpenCV3』霍夫变换原理及实现

    霍夫变换常用于检测直线特征,经扩展后的霍夫变换也可以检测其他简单的图像结构. 在霍夫变换中我们常用公式 ρ = x*cosθ + y*sinθ 表示直线,其中ρ是圆的半径(也可以理解为原点到直线的距离 ...

  3. 『OpenCV3』Harris角点特征_API调用及python手动实现

    一.OpenCV接口调用示意 介绍了OpenCV3中提取图像角点特征的函数: # coding=utf- import cv2 import numpy as np '''Harris算法角点特征提取 ...

  4. 『OpenCV3』基于色彩分割图片

    一.遍历图像实现色彩掩码 本节我们实现这样一个算法,我们指定某种颜色和一个阈值,根据输入图片生成一张掩码,标记符合的像素(和指定颜色的差异在阈值容忍内). 源代码如下,我们使用一个class完成这个目 ...

  5. 『OpenCV3』Mat简介

    Mat属性方法介绍:OpenCV2:Mat属性type,depth,step 推荐一套OpenCV入门博客:OpenCV探索 一.Mat Mat类用于表示一个多维的单通道或者多通道的稠密数组.能够用来 ...

  6. 『OpenCV3』处理视频&摄像头

    在opencv中,摄像头和视频文件并没有很大不同,都是一个可以read的数据源,使用cv2.VideoCapture(path).read()可以获取(flag,当前帧),对于每一帧,使用图片处理函数 ...

  7. 『OpenCV3』简单图片处理

    cv2和numpy深度契合,其图片读入后就是numpy.array,只不过dtype比较不常用而已,支持全部数组方法 数组既图片 import numpy as np import cv2 img = ...

  8. 『AngularJS』$location 服务

    项目中关于 $location的用法 简介 $location服务解析在浏览器地址栏中的URL(基于window.location)并且让URL在你的应用中可用.改变在地址栏中的URL会作用到$loc ...

  9. [原创] 【2014.12.02更新网盘链接】基于EasySysprep4.1的 Windows 7 x86/x64 『视频』封装

    [原创] [2014.12.02更新网盘链接]基于EasySysprep4.1的 Windows 7 x86/x64 『视频』封装 joinlidong 发表于 2014-11-29 14:25:50 ...

随机推荐

  1. 解决HTML5提出的新的元素不被IE6-8识别的解决办法

    解决HTML5提出的新的元素不被IE6-8识别的解决办法 <!--[if lt IE 9]> <script type="text/javascript" src ...

  2. 小型网站使用高德地图开发定位模块需要的php代码

    项目要求: 1.使用定位,获取gps信息 2.获取当前所在城市 3.从该城市中取数据,按照距离我的当前位置远近排序 方案 1.使用js获取当前位置信息,然后使用cookie或者session存储 fu ...

  3. ZBX_NOTSUPPORTED: Cannot obtain filesystem information: [13] Permission denied

    zabbix有默认两条自动发现规则,其中一条是自动发现已挂载文件系统,但笔者的三个挂载文件系统中两个监控成功了,一个失败 agentd端挂载情况: 仔细研究sdb1的挂载点,发现它是挂载在xiami用 ...

  4. osx brew mysql

    MariaDB Server is available for installation on macOS (formerly Mac OS X) via the Homebrew package m ...

  5. Codeforces 799D Field expansion(随机算法)

    Field expansion [题目链接]Field expansion [题目类型]随机化算法 &题解: 参考自:http://www.cnblogs.com/Dragon-Light/p ...

  6. 152. Maximum Product Subarray(动态规划)

    Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...

  7. Linux进程相关命令使用场景

    Linux进程相关命令使用场景 在Linux系统上工作时,我们常常会碰到很多和进程相关的查询场景,今天在这里进行详细的讲解,进程相关的对象包括以下几个: 端口:Port 进程号:PId 执行文件所在路 ...

  8. Beautiful Soup 学习手册

    Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式   快速开始 下面的一段HTML代码将作为例 ...

  9. ASP.NET Core SignalR

    ASP.NET Core SignalR 是微软开发的一套基于ASP.NET Core的与Web进行实时交互的类库,它使我们的应用能够实时的把数据推送给Web客户端. 功能 自动管理连接 允许同时广播 ...

  10. the network could not establish the connection

    为了方便建表等操作,我用sql developer 连接linux 底下的数据库,可连接时出现了这个问题the network could not establish the connection. ...