表数据量影响MySQL索引选择
现象
新建了一张员工表,插入了少量数据,索引中所有的字段均在where条件出现时,正确走到了idx_nap索引,但是where出现部分自左开始的索引时,却进行全表扫描,与MySQL官方所说的最左匹配原则“相悖”。
数据背景
CREATE TABLE `staffs` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(24) NOT NULL DEFAULT '' COMMENT '姓名',
`age` int(11) NOT NULL DEFAULT '0' COMMENT '年龄',
`pos` varchar(20) NOT NULL DEFAULT '' COMMENT '职位',
`add_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '入职时间',
PRIMARY KEY (`id`),
KEY `idx_nap` (`name`,`age`,`pos`)
) ENGINE=InnoDB AUTO_INCREMENT=8 DEFAULT CHARSET=utf8 COMMENT='员工记录表';
表中数据如下:
id name age pos add_time
1 July 23 dev 2018-06-04 16:02:02
2 Clive 22 dev 2018-06-04 16:02:32
3 Cleva 24 test 2018-06-04 16:02:38
4 July 23 test 2018-06-04 16:12:22
5 July 23 pre 2018-06-04 16:12:37
6 Clive 22 pre 2018-06-04 16:12:48
7 July 25 dev 2018-06-04 16:30:17
Explain语句看下执行计划
-- 全匹配走了索引
explain select * from staffs where name = 'July' and age = 23 and pos = 'dev';
id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE staffs NULL ref idx_nap idx_nap 140 const,const,const 1 100.00 NULL
开启优化器跟踪优化过程
-- 左侧部分匹配却没有走索引,全表扫描
explain select * from staffs where name = 'July' and age = 23;
id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE staffs2 NULL ALL idx_nap NULL NULL NULL 6 50.00 Using where
-- 开启优化器跟踪
set session optimizer_trace='enabled=on';
-- 在执行完查询语句后,在执行以下的select语句可以查看具体的优化器执行过程
select * from information_schema.optimizer_trace;
Trace部分的内容
{
"steps": [
{
"join_preparation": {
"select#": 1,
"steps": [
{
"expanded_query": "/* select#1 */ select `staffs`.`id` AS `id`,`staffs`.`name` AS `name`,`staffs`.`age` AS `age`,`staffs`.`pos` AS `pos`,`staffs`.`add_time` AS `add_time` from `staffs` where ((`staffs`.`name` = 'July') and (`staffs`.`age` = 23))"
}
]
}
},
{
"join_optimization": {
"select#": 1,
"steps": [
{
"condition_processing": {
"condition": "WHERE",
"original_condition": "((`staffs`.`name` = 'July') and (`staffs`.`age` = 23))",
"steps": [
{
"transformation": "equality_propagation",
"resulting_condition": "((`staffs`.`name` = 'July') and multiple equal(23, `staffs`.`age`))"
},
{
"transformation": "constant_propagation",
"resulting_condition": "((`staffs`.`name` = 'July') and multiple equal(23, `staffs`.`age`))"
},
{
"transformation": "trivial_condition_removal",
"resulting_condition": "((`staffs`.`name` = 'July') and multiple equal(23, `staffs`.`age`))"
}
]
}
},
{
"substitute_generated_columns": {
}
},
{
"table_dependencies": [
{
"table": "`staffs`",
"row_may_be_null": false,
"map_bit": 0,
"depends_on_map_bits": [
]
}
]
},
{
"ref_optimizer_key_uses": [
{
"table": "`staffs`",
"field": "name",
"equals": "'July'",
"null_rejecting": false
},
{
"table": "`staffs`",
"field": "age",
"equals": "23",
"null_rejecting": false
}
]
},
{
"rows_estimation": [
{
"table": "`staffs`",
"range_analysis": {
"table_scan": {
"rows": 6,
"cost": 4.3
},
"potential_range_indexes": [
{
"index": "PRIMARY",
"usable": false,
"cause": "not_applicable"
},
{
"index": "idx_nap",
"usable": true,
"key_parts": [
"name",
"age",
"pos",
"id"
]
}
],
"setup_range_conditions": [
],
"group_index_range": {
"chosen": false,
"cause": "not_group_by_or_distinct"
},
"analyzing_range_alternatives": {
"range_scan_alternatives": [
{
"index": "idx_nap",
"ranges": [
"July <= name <= July AND 23 <= age <= 23"
],
"index_dives_for_eq_ranges": true,
"rowid_ordered": false,
"using_mrr": false,
"index_only": false,
"rows": 3,
"cost": 4.61,
"chosen": false,
"cause": "cost"
}
],
"analyzing_roworder_intersect": {
"usable": false,
"cause": "too_few_roworder_scans"
}
}
}
}
]
},
{
"considered_execution_plans": [
{
"plan_prefix": [
],
"table": "`staffs`",
"best_access_path": {
"considered_access_paths": [
{
//可以看到这边MySQL计算得到使用索引的成本为2.6
"access_type": "ref",
"index": "idx_nap",
"rows": 3,
"cost": 2.6,
"chosen": true
},
{
//而全表扫描计算所得的成本为2.2
"rows_to_scan": 6,
"access_type": "scan",
"resulting_rows": 6,
"cost": 2.2,
"chosen": true
}
]
},
//因此选择了成本更低的scan
"condition_filtering_pct": 100,
"rows_for_plan": 6,
"cost_for_plan": 2.2,
"chosen": true
}
]
},
{
"attaching_conditions_to_tables": {
"original_condition": "((`staffs`.`age` = 23) and (`staffs`.`name` = 'July'))",
"attached_conditions_computation": [
],
"attached_conditions_summary": [
{
"table": "`staffs`",
"attached": "((`staffs`.`age` = 23) and (`staffs`.`name` = 'July'))"
}
]
}
},
{
"refine_plan": [
{
"table": "`staffs`"
}
]
}
]
}
},
{
"join_execution": {
"select#": 1,
"steps": [
]
}
}
]
}
增加表数据量
-- 接下来增大表的数据量
INSERT INTO `staffs` (`name`, `age`, `pos`, `add_time`)
VALUES
('July', 25, 'dev', '2018-06-04 16:30:17'),
('July', 23, 'dev1', '2018-06-04 16:02:02'),
('July', 23, 'dev2', '2018-06-04 16:02:02'),
('July', 23, 'dev3', '2018-06-04 16:02:02'),
('July', 23, 'dev4', '2018-06-04 16:02:02'),
('July', 23, 'dev6', '2018-06-04 16:02:02'),
('July', 23, 'dev5', '2018-06-04 16:02:02'),
('July', 23, 'dev7', '2018-06-04 16:02:02'),
('July', 23, 'dev8', '2018-06-04 16:02:02'),
('July', 23, 'dev9', '2018-06-04 16:02:02'),
('July', 23, 'dev10', '2018-06-04 16:02:02'),
('Clive', 23, 'dev1', '2018-06-04 16:02:02'),
('Clive', 23, 'dev2', '2018-06-04 16:02:02'),
('Clive', 23, 'dev3', '2018-06-04 16:02:02'),
('Clive', 23, 'dev4', '2018-06-04 16:02:02'),
('Clive', 23, 'dev6', '2018-06-04 16:02:02'),
('Clive', 23, 'dev5', '2018-06-04 16:02:02'),
('Clive', 23, 'dev7', '2018-06-04 16:02:02'),
('Clive', 23, 'dev8', '2018-06-04 16:02:02'),
('Clive', 23, 'dev9', '2018-06-04 16:02:02'),
('Clive', 23, 'dev10', '2018-06-04 16:02:02');
执行Explain
-- 再次执行同样的查询语句,会发现走到索引上了
explain select * from staffs where name = 'July' and age = 23;
id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE staffs NULL ref idx_nap idx_nap 78 const,const 13 100.00 NULL
查看新的Trace内容
-- 再看下优化器执行过程
{
"steps": [
{
"join_preparation": {
"select#": 1,
"steps": [
{
"expanded_query": "/* select#1 */ select `staffs`.`id` AS `id`,`staffs`.`name` AS `name`,`staffs`.`age` AS `age`,`staffs`.`pos` AS `pos`,`staffs`.`add_time` AS `add_time` from `staffs` where ((`staffs`.`name` = 'July') and (`staffs`.`age` = 23))"
}
]
}
},
{
"join_optimization": {
"select#": 1,
"steps": [
{
"condition_processing": {
"condition": "WHERE",
"original_condition": "((`staffs`.`name` = 'July') and (`staffs`.`age` = 23))",
"steps": [
{
"transformation": "equality_propagation",
"resulting_condition": "((`staffs`.`name` = 'July') and multiple equal(23, `staffs`.`age`))"
},
{
"transformation": "constant_propagation",
"resulting_condition": "((`staffs`.`name` = 'July') and multiple equal(23, `staffs`.`age`))"
},
{
"transformation": "trivial_condition_removal",
"resulting_condition": "((`staffs`.`name` = 'July') and multiple equal(23, `staffs`.`age`))"
}
]
}
},
{
"substitute_generated_columns": {
}
},
{
"table_dependencies": [
{
"table": "`staffs`",
"row_may_be_null": false,
"map_bit": 0,
"depends_on_map_bits": [
]
}
]
},
{
"ref_optimizer_key_uses": [
{
"table": "`staffs`",
"field": "name",
"equals": "'July'",
"null_rejecting": false
},
{
"table": "`staffs`",
"field": "age",
"equals": "23",
"null_rejecting": false
}
]
},
{
"rows_estimation": [
{
"table": "`staffs`",
"range_analysis": {
"table_scan": {
"rows": 27,
"cost": 8.5
},
"potential_range_indexes": [
{
"index": "PRIMARY",
"usable": false,
"cause": "not_applicable"
},
{
"index": "idx_nap",
"usable": true,
"key_parts": [
"name",
"age",
"pos",
"id"
]
}
],
"setup_range_conditions": [
],
"group_index_range": {
"chosen": false,
"cause": "not_group_by_or_distinct"
},
"analyzing_range_alternatives": {
"range_scan_alternatives": [
{
"index": "idx_nap",
"ranges": [
"July <= name <= July AND 23 <= age <= 23"
],
"index_dives_for_eq_ranges": true,
"rowid_ordered": false,
"using_mrr": false,
"index_only": false,
"rows": 13,
"cost": 16.61,
"chosen": false,
"cause": "cost"
}
],
"analyzing_roworder_intersect": {
"usable": false,
"cause": "too_few_roworder_scans"
}
}
}
}
]
},
{
"considered_execution_plans": [
{
"plan_prefix": [
],
"table": "`staffs`",
"best_access_path": {
"considered_access_paths": [
{
//使用索引的成本变为了5.3
"access_type": "ref",
"index": "idx_nap",
"rows": 13,
"cost": 5.3,
"chosen": true
},
{
//scan的成本变为了6.4
"rows_to_scan": 27,
"access_type": "scan",
"resulting_rows": 27,
"cost": 6.4,
"chosen": false
}
]
},
//使用索引查询的成本更低,因此选择了走索引
"condition_filtering_pct": 100,
"rows_for_plan": 13,
"cost_for_plan": 5.3,
"chosen": true
}
]
},
{
"attaching_conditions_to_tables": {
"original_condition": "((`staffs`.`age` = 23) and (`staffs`.`name` = 'July'))",
"attached_conditions_computation": [
],
"attached_conditions_summary": [
{
"table": "`staffs`",
"attached": null
}
]
}
},
{
"refine_plan": [
{
"table": "`staffs`"
}
]
}
]
}
},
{
"join_execution": {
"select#": 1,
"steps": [
]
}
}
]
}
结论
MySQL表数据量的大小,会影响索引的选择,具体的情况还是通过Explain和Optimizer Trace来查看与分析。
表数据量影响MySQL索引选择的更多相关文章
- 单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式
单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式 一 表结构如下: 万行 CREATE TABLE t_audit_operate_log ( Fid b ...
- SOME:收缩数据库日志文件,查看表数据量和空间占用,查看表结构索引修改时间
---收缩数据库日志文件 USE [master]ALTER DATABASE yourdatabasename SET RECOVERY SIMPLE WITH NO_WAITALTER DATAB ...
- MySQL索引选择及添加原则
索引选择性就是结果个数与总个数的比值. 用sql语句表示为: SELECT COUNT(*) FROM table_name WHERE column_name/SELECT COUNT(*) FRO ...
- sql server编写通用脚本自动统计各表数据量心得
工作过程中,如果一个数据库的表比较多,手工编写统计脚本就会比较繁琐,于是摸索出自动生成各表统计数据量脚本的通用方法,直接上代码: /* 脚本来源:https://www.cnblogs.com/zha ...
- 查询优化百万条数据量的MySQL表
转自https://www.cnblogs.com/llzhang123/p/9239682.html 1.两种查询引擎查询速度(myIsam 引擎 ) InnoDB 中不保存表的具体行数,也就是说, ...
- MySQL单表数据量过千万,采坑优化记录,完美解决方案
问题概述 使用阿里云rds for MySQL数据库(就是MySQL5.6版本),有个用户上网记录表6个月的数据量近2000万,保留最近一年的数据量达到4000万,查询速度极慢,日常卡死.严重影响业务 ...
- 单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式
一 表结构如下: 万行 CREATE TABLE t_audit_operate_log ( Fid bigint(16) AUTO_INCREMENT, Fcreate_time int(10 ...
- MySQL索引选择不正确并详细解析OPTIMIZER_TRACE格式
一 表结构如下: CREATE TABLE t_audit_operate_log ( Fid bigint(16) AUTO_INCREMENT, Fcreate_time int(10) un ...
- 大数据量下MySQL插入方法的性能比较
不管是日常业务数据处理中,还是数据库的导入导出,都可能遇到需要处理大量数据的插入.插入的方式和数据库引擎都会对插入速度造成影响,这篇文章旨在从理论和实践上对各种方法进行分析和比较,方便以后应用中插入方 ...
随机推荐
- 关于poi导出excel三种方式HSSFWorkbook,SXSSFWorkbook,csv的总结
poi导出excel最常用的是第一种方式HSSFWorkbook,不过这种方式数据量大的话会产生内存溢出问题,SXSSFWorkbook是一种大数据量导出格式,csv是另一种excel导出的一种轻快的 ...
- Forward团队-爬虫豆瓣top250项目-模块测试
项目托管平台地址:https://github.com/xyhcq/top250 模块测试:爬虫对信息的处理部分 测试方法: 实际运行一下代码: 可以看见,信息都已经爬取出来了 其他补充说明: 原本系 ...
- undo空间满的处理方法(含undo的学习与相关解释)
1.查看数据库当前实例使用的是哪个UNDO表空间: show parameter undo_tablespace 2.查看UNDO表空间对应的数据文件和大小 pages col file_name f ...
- KeepAlived+Nginx 安装
yum install -y gcc gcc-c++ openssl openssl-devel 目前keepalived最新版本下载:[root@rhel ~]#wget -c http://www ...
- 1.html基础标签:文本+链接+图片
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- preg_match(): Compilation failed: character value in \x{} or \o{} is too large at offset 8
如果用正则筛选中文的时候,需要在规则后面添加字符u,表示使用utf8编码去解析 $reg = '/[\x{4e00}-\x{9fa5}]/u'; 例如: $reg = '/[\x{4e00}-\x{9 ...
- 第十九节:Java基本数据类型,循环结构与分支循环
基本数据类型 Java中的基本数据类型,有8种,在Java中有四种类型,8种基本数据类型. 字节 boolean 布尔型为1/8 byte 字节类型为1 short 短整型为2 char 字符型为2 ...
- [CocoaPods]常见问题
“现在Swift有一个内置的包管理器,CocoaPods会停止开发吗?” Swift Package Manager(SPM)处于“早期设计和开发”阶段[1].它目前不支持iOS,观看操作系统或Obj ...
- 第三篇: 服务消费者(Feign)
本文根据https://blog.csdn.net/forezp/article/details/81040965写出,修正了部分瑕疵,在此对那位博主表示感谢. 上一篇文章讲述通过RestTempla ...
- SQL 的单引号转义字符
SQL 的转义字符是:'(单引号) 例:select * from user where name = '''06' 其中红色的单引号即表示转义字符,上例中 name的实际条件值为 '06,而不是 ' ...