#重新索引会更改DataFrame的行标签和列标签。重新索引意味着符合数据以匹配特定轴上的一组给定的标签。

#可以通过索引来实现多个操作 -

#重新排序现有数据以匹配一组新的标签。
#在没有标签数据的标签位置插入缺失值(NA)标记。
#示例 import pandas as pd
import numpy as np N=20 df = pd.DataFrame({
'A': pd.date_range(start='2016-01-01',periods=N,freq='D'),
'x': np.linspace(0,stop=N-1,num=N),
'y': np.random.rand(N),
'C': np.random.choice(['Low','Medium','High'],N).tolist(),
'D': np.random.normal(100, 10, size=(N)).tolist()
}) #reindex the DataFrame
df_reindexed = df.reindex(index=[0,2,5], columns=['A', 'C', 'B']) print (df_reindexed)
#Python
#执行上面示例代码,得到以下结果 - A C B
0 2016-01-01 Low NaN
2 2016-01-03 High NaN
5 2016-01-06 Low NaN
#Shell
#重建索引与其他对象对齐
#有时可能希望采取一个对象和重新索引,其轴被标记为与另一个对象相同。 考虑下面的例子来理解这一点。 #示例 import pandas as pd
import numpy as np df1 = pd.DataFrame(np.random.randn(10,3),columns=['col1','col2','col3'])
df2 = pd.DataFrame(np.random.randn(7,3),columns=['col1','col2','col3']) df1 = df1.reindex_like(df2)
print df1
#Python
#执行上面示例代码,得到以下结果 - col1 col2 col3
0 -2.467652 -1.211687 -0.391761
1 -0.287396 0.522350 0.562512
2 -0.255409 -0.483250 1.866258
3 -1.150467 -0.646493 -0.222462
4 0.152768 -2.056643 1.877233
5 -1.155997 1.528719 -1.343719
6 -1.015606 -1.245936 -0.295275
#Shell
#注意 - 在这里,df1数据帧(DataFrame)被更改并重新编号,如df2。 列名称应该匹配,否则将为整个列标签添加NAN。 #填充时重新加注
#reindex()采用可选参数方法,它是一个填充方法,其值如下: #pad/ffill - 向前填充值
#bfill/backfill - 向后填充值
#nearest - 从最近的索引值填充
#示例 import pandas as pd
import numpy as np df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3'])
df2 = pd.DataFrame(np.random.randn(2,3),columns=['col1','col2','col3']) # Padding NAN's
print df2.reindex_like(df1) # Now Fill the NAN's with preceding Values
print ("Data Frame with Forward Fill:")
print df2.reindex_like(df1,method='ffill')
#Python
#执行上面示例代码时,得到以下结果 - col1 col2 col3
0 1.311620 -0.707176 0.599863
1 -0.423455 -0.700265 1.133371
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaN Data Frame with Forward Fill:
col1 col2 col3
0 1.311620 -0.707176 0.599863
1 -0.423455 -0.700265 1.133371
2 -0.423455 -0.700265 1.133371
3 -0.423455 -0.700265 1.133371
4 -0.423455 -0.700265 1.133371
5 -0.423455 -0.700265 1.133371
#Shell
#注 - 最后四行被填充了。 #重建索引时的填充限制
#限制参数在重建索引时提供对填充的额外控制。限制指定连续匹配的最大计数。考虑下面的例子来理解这个概念 - #示例 import pandas as pd
import numpy as np df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3'])
df2 = pd.DataFrame(np.random.randn(2,3),columns=['col1','col2','col3']) # Padding NAN's
print df2.reindex_like(df1) # Now Fill the NAN's with preceding Values
print ("Data Frame with Forward Fill limiting to 1:")
print df2.reindex_like(df1,method='ffill',limit=1)
#Python
#在执行上面示例代码时,得到以下结果 - col1 col2 col3
0 0.247784 2.128727 0.702576
1 -0.055713 -0.021732 -0.174577
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaN #Data Frame with Forward Fill limiting to 1:
col1 col2 col3
0 0.247784 2.128727 0.702576
1 -0.055713 -0.021732 -0.174577
2 -0.055713 -0.021732 -0.174577
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaN
#Shell
#注意 - 只有第7行由前6行填充。 然后,其它行按原样保留。 #重命名
#rename()方法允许基于一些映射(字典或者系列)或任意函数来重新标记一个轴。
#看看下面的例子来理解这一概念。 #示例 import pandas as pd
import numpy as np df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3'])
print df1 print ("After renaming the rows and columns:")
print df1.rename(columns={'col1' : 'c1', 'col2' : 'c2'},index = {0 : 'apple', 1 : 'banana', 2 : 'durian'})
#Python
#执行上面示例代码,得到以下结果 - col1 col2 col3
0 0.486791 0.105759 1.540122
1 -0.990237 1.007885 -0.217896
2 -0.483855 -1.645027 -1.194113
3 -0.122316 0.566277 -0.366028
4 -0.231524 -0.721172 -0.112007
5 0.438810 0.000225 0.435479 #After renaming the rows and columns:
c1 c2 col3
apple 0.486791 0.105759 1.540122
banana -0.990237 1.007885 -0.217896
durian -0.483855 -1.645027 -1.194113
3 -0.122316 0.566277 -0.366028
4 -0.231524 -0.721172 -0.112007
5 0.438810 0.000225 0.435479
#Shell
#rename()方法提供了一个inplace命名参数,默认为False并复制底层数据。 指定传递inplace = True则表示将数据重命名。

pandas重新索引的更多相关文章

  1. pandas重置索引的几种方法探究

    pandas重置索引的几种方法探究 reset_index() reindex() set_index() 函数名字看起来非常有趣吧! 不仅如此. 需要探究. http://nbviewer.jupy ...

  2. (三)pandas 层次化索引

    pandas层次化索引 1. 创建多层行索引 1) 隐式构造 最常见的方法是给DataFrame构造函数的index参数传递两个或更多的数组 Series也可以创建多层索引 import numpy ...

  3. pandas 数据索引与选取

    我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列.区域.单元格.其对应使用的方法如下:一. 行,列 --> df[]二. 区域   --> df.loc[], df.ilo ...

  4. Pandas之索引

    Pandas的标签处理需要分成多种情况来处理,Series和DataFrame根据标签索引数据的操作方法是不同的,单列索引和双列索引的操作方法也是不同的. 单列索引 In [2]: import pa ...

  5. pandas DataFrame 索引(iloc 与 loc 的区别)

    Pandas--ix vs loc vs iloc区别 0. DataFrame DataFrame 的构造主要依赖如下三个参数: data:表格数据: index:行索引: columns:列名: ...

  6. Pandas重建索引

    重新索引会更改DataFrame的行标签和列标签.重新索引意味着符合数据以匹配特定轴上的一组给定的标签. 可以通过索引来实现多个操作 - 重新排序现有数据以匹配一组新的标签. 在没有标签数据的标签位置 ...

  7. pandas层级索引1

    层级索引(hierarchical indexing) 下面创建一个Series, 在输入索引Index时,输入了由两个子list组成的list,第一个子list是外层索引,第二个list是内层索引. ...

  8. pandas层级索引

    层级索引(hierarchical indexing) 下面创建一个Series, 在输入索引Index时,输入了由两个子list组成的list,第一个子list是外层索引,第二个list是内层索引. ...

  9. python库学习笔记——Pandas数据索引:ix、loc、iloc区别

    Different Choices for Indexing 1. loc--通过行标签索引行数据 1.1 loc[1]表示索引的是第1行(index 是整数) import pandas as pd ...

随机推荐

  1. ethereum/EIPs-158 State clearing 被EIP-161取代

    eip title author type category status created superseded-by 158 State clearing Vitalik Buterin Stand ...

  2. Elasticsearch 数据搜索篇·【入门级干货】===转

    ES即简单又复杂,你可以快速的实现全文检索,又需要了解复杂的REST API.本篇就通过一些简单的搜索命令,帮助你理解ES的相关应用.虽然不能让你理解ES的原理设计,但是可以帮助你理解ES,探寻更多的 ...

  3. #ifdef __cplusplus extern "C" { #endif”的定义

      平时我们在linux c平台开发的时候,引用了一些Cpp或者C的代码库,发现一些头文件有如下代码条件编译. #ifdef __cplusplus extern "C" { #e ...

  4. storm集成kafka的应用,从kafka读取,写入kafka

    storm集成kafka的应用,从kafka读取,写入kafka by 小闪电 0前言 storm的主要作用是进行流式的实时计算,对于一直产生的数据流处理是非常迅速的,然而大部分数据并不是均匀的数据流 ...

  5. 解决Skyline 6.5版本中3DML模型单体化后外部网页挂接问题

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  6. https原理简析

    [转]http://www.cnblogs.com/carsonzhu/p/5225778.html HTTPS的工作原理 HTTPS在传输数据之前需要客户端(浏览器)与服务端(网站)之间进行一次握手 ...

  7. 办公室的远程传文件 的命令三种方式linux

    不同的Linux之间copy文件常用有3种方法: 第一种就是ftp,也就是其中一台Linux安装ftp Server,这样可以另外一台使用ftp的client程序来进行文件的copy. 第二种方法就是 ...

  8. kubectl客户端工具远程连接k8s集群

    一.概述 一般情况下,在k8smaster节点上集群管理工具kubectl是连接的本地http8080端口和apiserver进行通讯的,当然也可以通过https端口进行通讯前提是要生成证书.所以说k ...

  9. TCP 三次握手原理,你真的理解吗?

    最近,阿里中间件小哥哥蛰剑碰到一个问题——client端连接服务器总是抛异常.在反复定位分析.并查阅各种资料文章搞懂后,他发现没有文章把这两个队列以及怎么观察他们的指标说清楚. 因此,蛰剑写下这篇文章 ...

  10. Quartz_配置

    quartz_jobs.xml job 任务 其实就是1.x版本中的<job-detail>,这个节点是用来定义每个具体的任务的,多个任务请创建多个job节点即可 name(必填) 任务名 ...