【POJ1179】Polygon 区间DP
这道题是典型的环形石子归并模型,破环成链后时间复杂度为\(O(n^3)\)
不过,因为题目中所给的数字可能是负数,仅仅记录区间内合并之后的最大值并不满足动态规划的最优子结构性质。因此,还需要额外记录下区间合并后的最小值,由最小值和最大值即可组合出整个区间的最大值。
代码如下:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
const int maxn=110;
char s[2];
int n,num[maxn],head[maxn];//0->+ 1->*
struct node{
long long mx,mi;
}dp[maxn][maxn];
vector<int> v;
void read_and_parse(){
scanf("%d",&n);
for(int i=1;i<=n;i++){//破环成链
scanf("%s%d",s,&num[i]);
if(s[0]=='t')head[i]=0;
else head[i]=1;
num[i+n]=num[i],head[i+n]=head[i];
}
for(int i=1;i<=n;i++){//初始化
dp[i][i].mx=dp[i+n][i+n].mx=num[i];
dp[i][i].mi=dp[i+n][i+n].mi=num[i];
}
}
const int inf=0x3f3f3f3f;
void solve(){
for(int len=2;len<=n;len++){
for(int l=1;l<=2*n-len+1;l++){
int r=l+len-1;
dp[l][r].mi=inf,dp[l][r].mx=-inf;
for(int k=l;k<r;k++){
if(head[k+1]){
dp[l][r].mx=max(dp[l][r].mx,dp[l][k].mi*dp[k+1][r].mi);
dp[l][r].mx=max(dp[l][r].mx,dp[l][k].mx*dp[k+1][r].mx);
dp[l][r].mi=min(dp[l][r].mi,dp[l][k].mx*dp[k+1][r].mx);
dp[l][r].mi=min(dp[l][r].mi,dp[l][k].mi*dp[k+1][r].mi);
dp[l][r].mi=min(dp[l][r].mi,dp[l][k].mx*dp[k+1][r].mi);
dp[l][r].mi=min(dp[l][r].mi,dp[l][k].mi*dp[k+1][r].mx);
}
else{
dp[l][r].mx=max(dp[l][r].mx,dp[l][k].mx+dp[k+1][r].mx);
dp[l][r].mi=min(dp[l][r].mi,dp[l][k].mi+dp[k+1][r].mi);
}
}
}
}
long long ans=-inf;
for(int i=1;i<=n;i++){
if(dp[i][i+n-1].mx>ans){
v.clear(),v.push_back(i);
ans=dp[i][i+n-1].mx;
}
else if(dp[i][i+n-1].mx==ans)
v.push_back(i);
}
printf("%lld\n",ans);
for(int i=0;i<v.size();i++)
printf("%d%c",v[i],i==v.size()-1?'\n':' ');
}
int main(){
read_and_parse();
solve();
return 0;
}
【POJ1179】Polygon 区间DP的更多相关文章
- POJ1179 Polygon 区间DP
题目大意: 多边形游戏,有N个顶点的多边形,3 <= N <= 50 ,多边形有N条边,每个顶点中有一个数字(可正可负),每条边上或者是“+”号,或者是“*”号.边从1到N编号,首先选择一 ...
- POJ 1179 - Polygon - [区间DP]
题目链接:http://poj.org/problem?id=1179 Time Limit: 1000MS Memory Limit: 10000K Description Polygon is a ...
- IOI1998 Polygon [区间dp]
[IOI1998]Polygon 题意翻译 题目可能有些许修改,但大意一致 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符号+(加)或符号*(乘 ...
- IOI 98 (POJ 1179)Polygon(区间DP)
很容易想到枚举第一步切掉的边,然后再计算能够产生的最大值. 联想到区间DP,令dp[i][l][r]为第一步切掉第i条边后从第i个顶点起区间[l,r]能够生成的最大值是多少. 但是状态不好转移,因为操 ...
- poj1179多边形——区间DP
题目:http://poj.org/problem?id=1179 区间DP,值得注意的是有负值,而且有乘法,因此可能会影响最大值: 注意memset中写-1仅仅是-1,-2才是一个很小的负数: 最后 ...
- 【IOI1998】Polygon 区间DP
题意翻译 题目可能有些许修改,但大意一致 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符号+(加)或符号*(乘积)标记. 第一步,删除其中一条边 ...
- [IOI1998] Polygon (区间dp,和石子合并很相似)
题意: 给你一个多边形(可以看作n个顶点,n-1条边的图),每一条边上有一个符号(+号或者*号),这个多边形有n个顶点,每一个顶点有一个值 最初你可以把一条边删除掉,这个时候这就是一个n个顶点,n-2 ...
- poj1179 环形+区间dp
因为要用到模,所以左起点设置为0比较好 #include<iostream> #include<cstdio> #include<cstring> #define ...
- 「IOI1998」「LuoguP4342」Polygon(区间dp
P4342 [IOI1998]Polygon - 洛谷 题意翻译 题目可能有些许修改,但大意一致 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符 ...
随机推荐
- Bash Shebang 小结
在 shell(Bash 是一种 shell) 中执行外部程序和脚本时,Linux 内核会启动一个新的进程,以便在新的进程中执行指定的程序或脚本.内核知道该如何为编译型的程序做这件事,但是对于脚本程序 ...
- GlusterFS分布式存储数据的恢复机制(AFR)的说明
GlusterFSFS恢复数据都是基于副本卷来说的,GlusterFSFS复制卷是采用镜像的方式做的,并且是同步事务性操作.简单来说就是,某一个客户要写文件时,先把这个文件锁住,然后同时写两个或多个副 ...
- ZooKeeper 典型的应用场景——及编程实现
如何使用 Zookeeper 作为一个分布式的服务框架,主要用来解决分布式集群中应用系统的一致性问题,它能提供基于类似于文件系统的目录节点树方式的数据存储,但是 Zookeeper 并不是用来专门存储 ...
- 13.14.15.16.17&《一个程序猿的生命周期》读后感
13.TDS 的标准是什么,怎么样才能认为他是一个标准的TDS?? 14.软件的质量包括哪些方面,如何权衡软件的质量? 15.如何解决功能与时间的矛盾,优秀的软件团队会发布有已知缺陷的软件么? 16. ...
- 素数问题三步曲_HDOJ2098
偶然间OJ上敲到一题素数问题便查询了相关算法.对于该类问题我个人学习分为三步曲:最笨的方法(TLE毫无疑问)->Eratosthrnes筛选法->欧拉线性筛选法 针对HDOJ2098这道题 ...
- iOS Runloop理解
一.RunLoop的定义 当有持续的异步任务需求时,我们会创建一个独立的生命周期可控的线程.RunLoop就是控制线程生命周期并接收事件进行处理的机制. RunLoop是iOS事件响应与任务处理最核心 ...
- 日常工作: 应用服务器Oracle驱动问题说明
1. .net使用Oracle驱动的发展等 作为.net线的产品的ERP产品 最初的版本 使用了.net 1.1发布时 微软提供的Oracle的驱动 但是后续微软的.net产品线貌似没有继续发展相应的 ...
- [转载]oracle 高水位线详解
一.oracle 高水位线详解 出处: https://www.cnblogs.com/linjiqin/archive/2012/01/15/2323030.html 一.什么是水线(High Wa ...
- python使用原始套接字 解析原始ip头数据
使用底层套接字解码底层流量,是这次做的重点工作. 首先来捕获第一个包 # coding:utf-8import socket # 监听的主机IP host = "192.168.1.100& ...
- OpenJS Foundation
OpenJS Foundation Introducing the OpenJS Foundation https://openjsf.org/ The Node.js Foundation and ...