一般字符串匹配过程

KMP算法是字符串匹配算法的一种改进版,一般的字符串匹配算法是:从主串(目标字符串)模式串(待匹配字符串)的第一个字符开始比较,如果相等则继续匹配下一个字符, 如果不相等则从主串的下一个字符开始匹配,直到模式串被匹配完,则匹配成功,或主串被匹配完且模式串未匹配完,则匹配失败。匹配过程入下图:

这种实现方式是最简单的, 但也是低效的,因为第三次匹配结束后的第四次和第五次是没有必要的

分析

第三次匹配在j = 0(a)i = 2(a)处开始,在j = 4(c)i = 6(b)处失败,这意味着模式串和主串中:j = 0(a)i = 2(a)j = 1(b)i = 3(b)j = 2(c)i = 4(c)j = 3(a)i = 5(a)这四个字符相互匹配。

分析模式串的前3个字符:模式串的第一个字符j = 0是aj = 1(b)j = 2(c)这两个字符和j = 0(a)不同,因此以这两个字符开头的匹配必定失败,在第三次匹配中,主串中i = 3(b)i = 4(c)和模式串j = 1(b)j = 2(c)相互匹配,因此匹配失败后,可以直接跳过主串中i = 3(b)i = 4(c)这两个字符的匹配。

继续分析模式串的j = 3(a)j = 4(c)这两个字符,如果模式串匹配到j = 4(c)这个字符才失败的话,因为j = 4(c)的前一个字符j = 3(a)和第一个字符j = 0(a)是相同的,结合上一个分析得知:

1):下一次匹配中主串已经跳过了和j = 3(a)前两个相互匹配的字符i = 3(b)i = 4(c),将从i = 5(a)开始匹配。 
2):j = 3(a)i = 5(a)相互匹配。

因此下一次匹配认为j = 3(a)i = 5(a)已经匹配过了,匹配从j = 4(b)i = 6(b)开始,这样的话也跳过了j = 3(a)这个字符的匹配。

同理可得第二次匹配也是没必要的。

KMP算法

KMP算法匹配过程

利用KMP算法匹配的过程如下图:

KMP算法的改进之处在于:能够知道在匹配失败后,有多少字符是不需要进行匹配可以直接跳过的,匹配失败后,下一次匹配从什么地方开始能够有效的减少不必要的匹配过程。

next[n]求解方法

由上面的分析可以发现,KMP算法的核心在于对模式串本身的分析,其分析结果能提供在j = n位置匹配失败时,从j = 0j = n - 1这个子串中前缀和后缀的最长公共匹配的字符数,这样说可能比较难以理解,看下图:

在得到子串前缀和后缀的最长公共匹配字符数l后,以后在i = x,j = n处匹配失败时,可以直接从i = x,j = l处继续匹配(证明过程参考:严蔚敏的《数据结构》4.3章),这样问题就很明显了,我们要求出n和l对应的值,其中n是模式串字符数组的下标,l的有序集合通常称之为next数组,前面两个模式串的next数组下标n的对应如下:

模式串2完整匹配过程

有了这个next数组,那么在匹配的过程中我们就能在j = n处匹配失败后,根据next[n]的值进行偏移,其中next[0]固定为-1,代表在当前i这个位置整个模式串和主串都无法匹配成功,要从下一个位置i = i + 1j = 0处开始匹配,模式串2的匹配过程如下:

现在知道了next数组的作用,也知道在有next数组时的匹配过程,那么剩下的问题就是如何通过代码求出next数组匹配过程了。

next数组的过程可以认为是将模式串拆分成n个子串,分别对每个子串求前缀和后缀的最长公共匹配字符数l,这一点可以通过上图(最长公共匹配字符数)看出来(没有画出l=0时的图解)看出来。

代码实现

next数组的代码如下:

 void get_next(string pattern, int next[]) {
// !!!!!!!!!!由网友(评论第一条)指出该算法存在问题,已将有问题的代码注释并附上临时想到的算法代码。 // int i = 0; // i用来记录当前计算的next数组元素的下标, 同时也作为模式串本身被匹配到的位置的下标
// int j = 0; // j == -1 代表从在i的位置模式串无法匹配成功,从下一个位置开始匹配
// next[0] = -1; // next[0]固定为-1
// int p_len = pattern.length();
// while (++i < p_len) {
// if (pattern[i] == pattern[j]) {
// // j是用来记录当前模式串匹配到的位置的下标, 这就意味着当j = l时,
// // 则在pattern[j]这个字符前面已经有l - 1个成功匹配,
// // 即子串前缀和后缀的最长公共匹配字符数有l - 1个。
// next[i] = j++;
// } else {
// next[i] = j;
// j = 0;
// if (pattern[i] == pattern[j]) {
// j++;
// }
// }
// } int j = ;
next[] = -;
int p_len = pattern.length();
int matched = ;
while (++j <= p_len) {
int right = j - ;
int mid = floor(right / );
int left = right % == ? mid - : mid;
int curLeft = left;
int curRight = right;
while (curLeft >= ) {
if (pattern[curLeft] == pattern[curRight]) {
matched++;
curLeft--;
curRight--;
} else {
matched = ;
curLeft = --left;
curRight = right;
}
}
next[j] = matched;
matched = ;
}
}

根据next数组求模式串在主串中的位置代码如下:

int search(string source, string pattern, int next[]) {
int i = ;
int j = ;
int p_len = pattern.length();
int s_len = source.length();
while (j < p_len && i < s_len) {
if (j == - || source[i] == pattern[j]) {
i++;
j++;
}
else {
j = next[j];
}
}
if (j < pattern.length())
return -;
else
return i - pattern.length();
}

测试代码如下:

int main() {
string source = "ABCDABCEAAAABASABCDABCADABCDABCEAABCDABCEAAABASABCDABCAABLAKABCDABABCDABCEAAADSFDABCADABCDABCEAAABCDABCEAAABASABCDABCADABCDABCEAAABLAKABLAKK";
// string pattern = "abcaaabcab";
string pattern = "ABCDABCEAAABASABCDABCADABCDABCEAAABLAK";
int next[pattern.length()] = { NULL };
get_next(pattern, next);
cout << "next数组: \t";
for (int i = ; i < pattern.length(); i++)
cout << next[i] << " ";
cout << endl;
int pos = search(source, pattern, next);
if (- != pos) {
cout << "匹配成功,模式串在主串中首次出现的位置是: 第" << pos + << "位";
getchar();
return ;
} else {
cout << "匹配失败";
}
getchar();
return ;
}

执行结果:

next数组: -
匹配成功,模式串在主串中首次出现的位置是: 第97位

KMP算法优化

再回过头去看模式串2的next数组的图:

如果模式串和主串的匹配在j = 6(b)处失败的话,根据j = next[6] = 1得知下一次匹配从j = 1处开始,j = 1处的字符和j = 6处的字符同为c,因此这次匹配必定会失败。 
同样的,模式串和主串的匹配在j = 7(c)处或在j = 9(b)处失败的话,根据next数组偏移后下一次匹配也必定会失败。

考虑如果模式串是: aaaac,根据一般的KMP算法求出的next数组及匹配过程如下:

显而易见,在第二次匹配失败后,第三、四、五次匹配都是没有意义的,j = next[3]、j = next[2]、j = next[1]、j = next[0]这四处的字符都是a,在j = 3(a)处匹配失败时,根据模式串本身就应该可以得出结论:可以跳过j = 2(a)、j = 1(a)、j = 0(a)的匹配,直接从i = i + 1 、j = 0处开始匹配,所以优化过后的next数组应该是:

代码实现

优化后的求next数组的代码如下:

void get_next(string pattern, int next[]) {
// !!!!!!!!!!由网友(评论第一条)指出该算法存在问题,更新后的代码在上方,新算法的优化代码暂未实现,但是优化思路是正确的。 // int i = 0; // i用来记录当前计算的next数组元素的下标, 同时也作为模式串本身被匹配到的位置的下标
// int j = 0; // j == -1 代表从在i的位置模式串无法匹配成功,从下一个位置开始匹配
// next[0] = -1; // next[0]固定为-1
// int p_len = pattern.length();
// while (++i < p_len) {
// if (pattern[i] == pattern[j]) {
// // j是用来记录当前模式串匹配到的位置的下标, 这就意味着当j = l时,
// // 则在pattern[j]这个字符前面已经有l - 1个成功匹配,
// // 即子串前缀和后缀的最长公共匹配字符数有l - 1个。
// next[i] = j++;
//
// // 当根据next[i]偏移后的字符与偏移前的字符向同时
// // 那么这次的偏移是没有意义的,因为匹配必定会失败
// // 所以可以一直往前偏移,直到
// // 1): 偏移前的字符和偏移后的字符不相同。
// // 2): next[i] == -1
// while (next[i] != -1 && pattern[i] == pattern[next[i]]) {
// next[i] = next[next[i]];
// }
// } else {
// next[i] = j;
// j = 0;
// if (pattern[i] == pattern[j]) {
// j++;
// }
// }
// }
}

字符串匹配的 KMP算法的更多相关文章

  1. Luogu 3375 【模板】KMP字符串匹配(KMP算法)

    Luogu 3375 [模板]KMP字符串匹配(KMP算法) Description 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来 ...

  2. 字符串匹配的kmp算法 及 python实现

    一:背景 给定一个主串(以 S 代替)和模式串(以 P 代替),要求找出 P 在 S 中出现的位置,此即串的模式匹配问题. Knuth-Morris-Pratt 算法(简称 KMP)是解决这一问题的常 ...

  3. HDU 1711 Number Sequence (字符串匹配,KMP算法)

    HDU 1711 Number Sequence (字符串匹配,KMP算法) Description Given two sequences of numbers : a1, a2, ...... , ...

  4. 字符串匹配(KMP 算法 含代码)

    主要是针对字符串的匹配算法进行解说 有关字符串的基本知识 传统的串匹配法 模式匹配的一种改进算法KMP算法 网上一比較易懂的解说 小样例 1计算next 2计算nextval 代码 有关字符串的基本知 ...

  5. 实现字符串匹配的KMP算法

    KMP算法是Knuth-Morris-Pratt算法的简称,它主要用于解决在一个长字符串S中匹配一个较短字符串s. 首先我们从整体来把我这个算法的思想. 字符串匹配的朴素算法: 我们容易想到朴素算法, ...

  6. 字符串匹配的KMP算法

    ~~~摘录 来源:阮一峰~~~ 字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串”BBC ABCDAB ABCDABCDABDE”,我想知道,里面是否包含另一个字符串”ABCDABD”? 许 ...

  7. 字符串匹配的KMP算法详解及C#实现

    字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD" ...

  8. 字符串匹配与KMP算法实现

    >>字符串匹配问题 字符串匹配问题即在匹配串中寻找模式串是否出现, 首先想到的是使用暴力破解,也就是Brute Force(BF或蛮力搜索) 算法,将匹配串和模式串左对齐,然后从左向右一个 ...

  9. 字符串匹配的KMP算法(转)

    转载:http://kb.cnblogs.com/page/176818/ 字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE&quo ...

随机推荐

  1. 认证鉴权与API权限控制在微服务架构中的设计与实现(四)

    引言: 本文系<认证鉴权与API权限控制在微服务架构中的设计与实现>系列的完结篇,前面三篇已经将认证鉴权与API权限控制的流程和主要细节讲解完.本文比较长,对这个系列进行收尾,主要内容包括 ...

  2. Vue(二十三)vuex + axios + 缓存 运用 (以登陆功能为例)

    (一)axios 封装 (1)axios拦截器 可以在axios中加入加载的代码... (2)封装请求 后期每个请求接口都可以写在这个里面... (二)vuex user.js import { lo ...

  3. IIS7常见错误及解决方法

    IIS7常见错误及解决方法   问题一:HTTP 错误 500.19 - Internal Server Error 无法访问请求的页面,因为该页的相关配置数据无效.  详细错误信息模块 IIS We ...

  4. itchat

    # -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. "&quo ...

  5. Github超棒资源汇总

    Awesome List 中文资源大全 经典编程书籍大全 免费的编程中文书籍索引 awesome-awesomeness-zh_CN https://github.com/jnv/lists awes ...

  6. Exchange - Add Owner of Distribution Group

    User Interface: Open Exchange Management Console. Expand Microsoft Exchange On-Premises, then right ...

  7. JS实现网站内容的禁止复制和粘贴、另存为

    1.使右键和复制失效方法1:在网页中加入以下代码: <script language="Javascript"> document.oncontextmenu=new  ...

  8. PHP性能分析——xhprof(window 安装xhporf)

    1 下载xhprof的php扩展 因为官方的xhprof不支持php7,所以采用tideways版本的xhprof 下载地址:windows版tideways_xhprof 将windows版的dll ...

  9. iOS NSDictionary 转Json 去掉换行去掉空格

    //dic 转json 如果用系统自带的会出现空格. + (NSString *)returnJSONStringWithDictionary:(NSDictionary *)dictionary{ ...

  10. 【.NET 深呼吸】.net core 中的轻量级 Composition

    记得前面老周写过在.net core 中使用 Composition 的烂文.上回老周给大伙伴们介绍的是一个“重量级”版本—— System.ComponentModel.Composition.应该 ...