UVA12171-Sculpture(离散化+floodfill)
Problem UVA12171-Sculpture
Accept: 196 Submit: 1152
Time Limit: 3000 mSec
Problem Description
Imagine a box, made of copper plate. Imagine a second one, intersecting the rst one, and several others, intersecting each other (or not). That is how the sculptor Oto Boxing constructs his sculptures. In fact he does not construct that much, he only makes the design; the actual construction is contracted out to a construction company. For the calculation of the costs of construction the company needs to know the total area of copper plate involved. Parts of a box that are hidden in another box are not realized in copper, of course. (Copper is quite expensive, and prices are rising.) After construction, the total construction is plunged into a bath of chemicals. To prevent this bath from running over, the construction company wants to know the total volume of the construction. Given that a construction is a collection of boxes, you are asked to calculate the area and the volume of the construction. Some of Oto’s designs are connected, others are not. Either way, we want to know the total area and the total volume. It might happen that the boxes completely enclose space that is not included in any of the boxes (see the second example below). Because the liquid cannot enter that space, its volume must be added to the total volume. Copper plate bordering this space is superfluous, of course, so it does not add to the area.
Input
On the rst line one positive number: the number of testcases, at most 100. After that per testcase:
• One line with an integer n (1 ≤ n ≤ 50): the number of boxes involved.
• n lines with six positive integers x0,y0,z0,x ,y,z (1 ≤ x0,y0,z0,x,y,z ≤ 500): the triple (x0,y0,z0) is the vertex of the box with the minimum values for the coordinates and the numbers x, y, z are the dimensions of the box (x, y and z dimension, respectively). All dimensions are in centimeters. The sides of the boxes are always parallel to the coordinate axes.
Output
Per testcase: • One line with two numbers separated by single spaces: the total amount of copper plate needed (in cm2), and the total volume (in cm3).
Sample Input
2
2
1 2 3 3 4 5
6 2 3 3 4 5
7
1 1 1 5 5 1
1 1 10 5 5 1
1 1 2 1 4 8
2 1 2 4 1 8
5 2 2 1 4 8
1 5 2 4 1 8
3 3 4 1 1 1
Sample Output
188 120
250 250
题解:这个题还是挺费劲的,floodfill倒不是重点,困难的地方在于离散化(起码对我来说很困难),原来也做过两道离散化的题,但是对于这个东西没啥概念,这道题让我对离散化的理解深刻了一些。
离散化之后这里的长方体就变成了正方体,想到这一点对于理解整个思路很有帮助。
这里面还有一个思想就是用点代表长方体,此处用的是三个坐标均为最小的点来代表一个长方体。
lrj的代码中把函数封装在结构体感觉灰常方便,学习了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <algorithm>
using namespace std; const int maxn = +;
const int maxl = +; int xl[maxn],yl[maxn],zl[maxn];
int xr[maxn],yr[maxn],zr[maxn]; int gra[maxn<<][maxn<<][maxn<<];
int xx[maxn<<],yy[maxn<<],zz[maxn<<];
int xcnt,ycnt,zcnt; int dx[] = {,-,,,,};
int dy[] = {,,,-,,};
int dz[] = {,,,,,-}; struct Point{
int x,y,z;
Point(int x = ,int y = ,int z = ) :
x(x),y(y),z(z) {}
bool valid()const{
if(<=x && <=y && <=z && x<xcnt- && y<ycnt- && z<zcnt-) return true;
else return false;
}
bool solid()const{
return gra[x][y][z] == ;
}
void Setvis()const{
gra[x][y][z] = ;
}
bool Getvis()const{
return gra[x][y][z] ==;
}
Point neighbour(int i)const{
return Point(x+dx[i],y+dy[i],z+dz[i]);
}
int volume()const{
return (xx[x+]-xx[x])*(yy[y+]-yy[y])*(zz[z+]-zz[z]);
}
int area(int dir)const{
if(dx[dir] != ) return (yy[y+]-yy[y])*(zz[z+]-zz[z]);
else if(dy[dir] != ) return (xx[x+]-xx[x])*(zz[z+]-zz[z]);
else return (xx[x+]-xx[x])*(yy[y+]-yy[y]);
}
}; int ID_find(int *num,int len,int tar){
return lower_bound(num,num+len,tar)-num;
} void floodfill(int &V,int &S){
Point c;
c.Setvis();
queue<Point> que;
que.push(c);
while(!que.empty()){
Point first = que.front();
que.pop();
V += first.volume();
for(int i = ;i < ;i++){
Point Next = first.neighbour(i);
if(Next.valid()){
if(Next.solid()){
S += first.area(i);
}
else if(!Next.Getvis()){
Next.Setvis();
que.push(Next);
}
}
}
}
V = maxl*maxl*maxl-V;
} void Unique(int *num,int cnt,int &ccnt){
sort(num,num+cnt);
ccnt = unique(num,num+cnt)-num;
} int main()
{
//freopen("input.txt","r",stdin);
int iCase;
scanf("%d",&iCase);
while(iCase--){
int n;
scanf("%d",&n);
int cnt = ;
xx[] = yy[] = zz[] = ;
xx[] = yy[] = zz[] = maxl;
for(int i = ;i < n;i++){
scanf("%d%d%d%d%d%d",&xl[i],&yl[i],&zl[i],&xr[i],&yr[i],&zr[i]);
xr[i] += xl[i],yr[i] += yl[i],zr[i] += zl[i];
xx[cnt] = xl[i],yy[cnt] = yl[i],zz[cnt++] = zl[i];
xx[cnt] = xr[i],yy[cnt] = yr[i],zz[cnt++] = zr[i];
}
Unique(xx,cnt,xcnt);
Unique(yy,cnt,ycnt);
Unique(zz,cnt,zcnt);
memset(gra,,sizeof(gra));
for(int i = ;i < n;i++){
int X1 = ID_find(xx,xcnt,xl[i]),X2 = ID_find(xx,xcnt,xr[i]);
int Y1 = ID_find(yy,ycnt,yl[i]),Y2 = ID_find(yy,ycnt,yr[i]);
int Z1 = ID_find(zz,zcnt,zl[i]),Z2 = ID_find(zz,zcnt,zr[i]);
for(int X = X1;X < X2;X++){ //这里一定是 < ,因为是以点代体,如果点到了边界,体就出去了
for(int Y = Y1;Y < Y2;Y++){
for(int Z = Z1;Z < Z2;Z++){
gra[X][Y][Z] = ;
}
}
}
}
int V = ,S = ;
floodfill(V,S);
printf("%d %d\n",S,V);
}
return ;
}
UVA12171-Sculpture(离散化+floodfill)的更多相关文章
- Uva 12171 Sculpture - 离散化 + floodfill
题目连接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- UVa Sculpture(离散化 floodfill)
题意: 给定n个立方体的一个顶点坐标和3边长度, 问这些立方体组成的雕塑的表面积和体积, 坐标都是整数,n最大为50, 最大为500, 边长最大也是500. 分析: 继UVa221后又一道离散 ...
- UVa 12171 (离散化 floodfill) Sculpture
题意: 三维空间中有n个长方体组成的雕塑,求表面积和体积. 分析: 我们可以在最外边加一圈“空气”,然后求空气的连通块的体积,最后用总体积减去即是雕塑的体积. 还有一个很“严重”的问题就是5003所占 ...
- hdu 2771(uva 12171) Sculpture bfs+离散化
题意: 给出一些边平行于坐标轴的长方体,这些长方体可能相交.也可能相互嵌套.这些长方体形成了一个雕塑,求这个雕塑的整体积和表面积. 题解: 最easy想到直接进行bfs或者dfs统计,但此题的麻烦之处 ...
- UVa12171 hdu2771 UVaLive4291 Sculpture
填坑系列(p.171) orz rjl 代码基本和rjl的一样 #include<cstdio> #include<cstring> #include<cstdlib&g ...
- UVA 12171 Sculpture
https://vjudge.net/problem/UVA-12171 题目 某人设计雕塑,用的是很扯的方法:把一堆长方体拼起来.给出长方体的坐标和长宽高,求外表面积.因为要将这雕塑进行酸洗,需要知 ...
- UVA 12171 (hdu 2771)sculptrue(离散化)
以前对离散化的理解不够,所以把端点和区间区分来考虑但是做完这题以后有了新的认识: 先来看一个问题:给你以下的网格,你需要多少空间去存储红点区间的信息呢? 只需要图上所示的1,2,3,4个点就足够表示红 ...
- NBUT 1457 莫队算法 离散化
Sona Time Limit:5000MS Memory Limit:65535KB 64bit IO Format: Submit Status Practice NBUT 145 ...
- 项目安排(离散化+DP)
题目来源:网易有道2013年校园招聘面试二面试题 题目描述: 小明每天都在开源社区上做项目,假设每天他都有很多项目可以选,其中每个项目都有一个开始时间和截止时间,假设做完每个项目后,拿到报酬都是不同的 ...
随机推荐
- 鸟哥的Linux私房菜:基础学习篇 —— 第六章笔记
1.下面这些就是比较特殊的目录,得要用力的记下来才行: . 代表此层目录 .. 代表上一层目录 - 代表前一个工作目录 ~ 代表“目前使用者身份”所在的主文件夹 ~account 代表 account ...
- js------10种循环方法
let arr = [{a:1},{a:2},{a:3},{a:4},{a:5}]; // 1.while循环 let sum = 0; let num = 1; while(num <= 1) ...
- Django学习(5)优雅地分页展示网页
在我们平时浏览网页时,经常会遇到网页里条目很多的情形,这时就会用到分页展示的功能.那么,在Django中,是如何实现网页分类的功能的呢?答案是Paginator类. 本次分享讲具体展示如何利用Djan ...
- PowerDesigner 修改Name ,Code 不变
tools-> General Options-> Dialog:Operation Modes: 去掉 NameToCodeMirroring 前面的√
- [PHP] 算法-根据前序和中序遍历结果重建二叉树的PHP实现
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5 ...
- [android] 手机卫士保存安全号码
调用ListView对象的setOnItemClickListener()方法,设置条目的点击事件,参数:OnItemClickListener对象 使用匿名内部类实现,重写onClick()方法,传 ...
- php 中的sprintf 坑
先说下为什么要写这个函数的前言,这个是我在看工作中发现一处四舍五入的bug后,当时非常不理解, echo sprintf('%.2f',123.455); //123.45 echo sprintf( ...
- 笔记-返回到前一个页面时显示前一个页面中ajax获取的数据
笔记第一部分:http://www.cnblogs.com/zczhangcui/p/6869219.html 在第一部分遇到的问题是,用ajax获取了一系列列表信息后,拼接好html后插入到了原有页 ...
- 可视化接口管理工具RAP,模拟数据,校验接口
最近看到一个不错的接口管理的工具,分享一下 RAP ppt介绍:http://www.imooc.com/video/11060 RAP是一个可视化接口管理工具 通过分析接口结构,动态生成模拟数据,校 ...
- 常见聚类算法——K均值、凝聚层次聚类和DBSCAN比较
聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不 ...