显然排列中的最大值会将排列分成所能看到的建筑不相关的两部分。对于某一边,将所能看到的建筑和其遮挡的建筑看成一个集合。显然这个集合内最高的要排在第一个,而剩下的建筑可以随便排列,这相当于一个圆排列。同时这些集合的相对顺序显然是固定的。那么考虑划分出一些集合分别放在两边即可。这就是一个非常标准的第一类斯特林数了。数据范围比较友好,可以直接递推。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 50010
#define M 210
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,a,b,S[N][M],C[N][M];
int main()
{
#ifndef ONLINE_JUDGE
freopen("build.in","r",stdin);
freopen("build.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
S[][]=;C[][]=;
for (int i=;i<=;i++)
{
S[i][]=;C[i][]=;
for (int j=;j<=min(,i);j++)
S[i][j]=(S[i-][j-]+1ll*S[i-][j]*(i-))%P,
C[i][j]=(C[i-][j-]+C[i-][j])%P;
}
T=read();
while (T--)
{
n=read(),a=read(),b=read();
printf("%d\n",1ll*C[a+b-][a-]*S[n-][a+b-]%P);
}
return ;
}

Luogu4609 FJOI2016建筑师(斯特林数)的更多相关文章

  1. [FJOI2016]建筑师 斯特林数

    早期作品,不喜轻喷. LG传送门 组合数与斯特林数的基本应用. 组合数 大家应该都熟悉它的表达式,但我们这里使用它的递推式会更加方便,下面推导组合数的递推式.设\(\binom{n}{m}\)表示在\ ...

  2. [Luogu4609][FJOI2016]建筑师

    luogu description 一个\(1...n\)的排列,其前缀最大值有\(A\)个,后缀最大值有\(B\)个,求满足要求的排列数. 一个位置\(i\)满足前缀最大当且仅当不存在\(j< ...

  3. Luogu4609 FJOI2016 建筑师 第一类斯特林数

    题目传送门 题意:给出$N$个高度从$1$到$N$的建筑,问有多少种从左往右摆放这些建筑的方法,使得从左往右看能看到$A$个建筑,从右往左看能看到$B$个建筑.$N \leq 5 \times 10^ ...

  4. 【Luogu4609】建筑师(第一类斯特林数,组合数学)

    [Luogu4609]建筑师(组合数学) 题面 洛谷 题解 首先发现整个数组一定被最高值切成左右两半,因此除去最高值之后在左右分开考虑. 考虑一个暴力\(dp\) ,设\(f[i][j]\)表示用了\ ...

  5. 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】

    题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...

  6. 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)

    题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...

  7. P4609 [FJOI2016]建筑师(第一类斯特林数)

    传送门 没想到连黑题都会有双倍经验的 其实这题本质上是和CF960G Bandit Blues一样的,不过那里是要用分治FFT预处理第一类斯特林数,这里直接打表预处理第一类斯特林数就可以了 //min ...

  8. LUOGU P4609 [FJOI2016]建筑师(第一类斯特林数)

    传送门 解题思路 好神仙的思路,首先一种排列中按照最高点将左右分开,那么就是要在左边选出\(a-1\)个,右边选出\(b-1\)一个,这个如何计算呢?考虑第一类斯特林数,第一类斯特林数是将\(n\)个 ...

  9. CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增

    传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...

随机推荐

  1. ubuntu 14.04 sudo apt-get 简单 安装 ffmpeg

    一种方法是这样的sudo add-apt-repository ppa:kirillshkrogalev/ffmpeg-next sudo apt-get update sudo apt-get in ...

  2. java StringBuilder和StringBuffer 用法

    可变的字符串,兄弟关系StringBuilder:效率高,安全性低StringBuffer:效率低,安全性高 StringBuilder 的常用方法的使用,StringBuffer用法一样. publ ...

  3. co模块源码学习笔记

    // Sorrow.X --- 添加注释,注释纯属个人理解 /** * slice变量 引用 数组的 slice方法 */ var slice = Array.prototype.slice; /** ...

  4. rook 入门理解

    参考:https://my.oschina.net/u/2306127/blog/1830356?from=timeline 1.Rook通过一个操作器(operator)完成后续操作,只需要定义需要 ...

  5. 一、java三大特性--封装

    封装字面意思即包装.专业点来说就是数据隐藏,是指利用抽象数据将数据和基于数据的操作封装起来,使其构成一个不可分割的独立实体,数据被保护在抽象数据类型的内部,尽可能的隐藏细节,只保留一些对外的接口和外部 ...

  6. C#中的位的或运算的理解

    如果懂位的运算,看到下面这2个程序执行的结果,会很容易理解,如果像我这样的菜鸟,刚接触开始肯定也觉得晕晕的,|= 这是什么运算符? |=就是位的或运算符,下面还是用上面的程序来讲解一下,为什么上面2个 ...

  7. eclipse打断点的调试

    对于程序员来说,最重要的技能之一其实是在发现问题的时候,定位问题,然后才能解决问题. 发现问题的能力十分的重要.而debug的水平就是基础. 打断点之后,操作相应的步骤,然后eclipse会跳转到相应 ...

  8. Maven学习笔记-03-Eclipse和Maven集成

    本文使用 Eclipse 集成 Maven,并创一个基于 maven的web工程 一 环境版本信息 本文使用的版本信息如下: Eclipse Version: Mars.1 Release (4.5. ...

  9. 你要的fpga&数字前端笔面试题都在这儿了

    转自http://ninghechuan.com 你要的FPGA&数字前端笔面试题来了 FPGA&ASIC基本开发流程 题目:简述ASIC设计流程,并列举出各部分用到的工具. 勘误:C ...

  10. GATT服务搜索流程(一)

    GATT的规范阅读起来还是比较简答, 但是这样的规范在代码上是如何实现的呢?下面就分析一下bluedroid 协议栈关于GATT的代码流程. BLE的设备都是在SMP之后进行ATT的流程的交互.从代码 ...