Luogu4609 FJOI2016建筑师(斯特林数)
显然排列中的最大值会将排列分成所能看到的建筑不相关的两部分。对于某一边,将所能看到的建筑和其遮挡的建筑看成一个集合。显然这个集合内最高的要排在第一个,而剩下的建筑可以随便排列,这相当于一个圆排列。同时这些集合的相对顺序显然是固定的。那么考虑划分出一些集合分别放在两边即可。这就是一个非常标准的第一类斯特林数了。数据范围比较友好,可以直接递推。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 50010
#define M 210
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,a,b,S[N][M],C[N][M];
int main()
{
#ifndef ONLINE_JUDGE
freopen("build.in","r",stdin);
freopen("build.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
S[][]=;C[][]=;
for (int i=;i<=;i++)
{
S[i][]=;C[i][]=;
for (int j=;j<=min(,i);j++)
S[i][j]=(S[i-][j-]+1ll*S[i-][j]*(i-))%P,
C[i][j]=(C[i-][j-]+C[i-][j])%P;
}
T=read();
while (T--)
{
n=read(),a=read(),b=read();
printf("%d\n",1ll*C[a+b-][a-]*S[n-][a+b-]%P);
}
return ;
}
Luogu4609 FJOI2016建筑师(斯特林数)的更多相关文章
- [FJOI2016]建筑师 斯特林数
早期作品,不喜轻喷. LG传送门 组合数与斯特林数的基本应用. 组合数 大家应该都熟悉它的表达式,但我们这里使用它的递推式会更加方便,下面推导组合数的递推式.设\(\binom{n}{m}\)表示在\ ...
- [Luogu4609][FJOI2016]建筑师
luogu description 一个\(1...n\)的排列,其前缀最大值有\(A\)个,后缀最大值有\(B\)个,求满足要求的排列数. 一个位置\(i\)满足前缀最大当且仅当不存在\(j< ...
- Luogu4609 FJOI2016 建筑师 第一类斯特林数
题目传送门 题意:给出$N$个高度从$1$到$N$的建筑,问有多少种从左往右摆放这些建筑的方法,使得从左往右看能看到$A$个建筑,从右往左看能看到$B$个建筑.$N \leq 5 \times 10^ ...
- 【Luogu4609】建筑师(第一类斯特林数,组合数学)
[Luogu4609]建筑师(组合数学) 题面 洛谷 题解 首先发现整个数组一定被最高值切成左右两半,因此除去最高值之后在左右分开考虑. 考虑一个暴力\(dp\) ,设\(f[i][j]\)表示用了\ ...
- 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】
题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...
- 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)
题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...
- P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 没想到连黑题都会有双倍经验的 其实这题本质上是和CF960G Bandit Blues一样的,不过那里是要用分治FFT预处理第一类斯特林数,这里直接打表预处理第一类斯特林数就可以了 //min ...
- LUOGU P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 解题思路 好神仙的思路,首先一种排列中按照最高点将左右分开,那么就是要在左边选出\(a-1\)个,右边选出\(b-1\)一个,这个如何计算呢?考虑第一类斯特林数,第一类斯特林数是将\(n\)个 ...
- CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增
传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...
随机推荐
- 如何屏蔽在Skyline的TerraExplorer中加载Shape或者KML等数据时的缓冲提示信息
在使用TerraExplorer软件或者二次开发自定义打开FLY工程时,以及在已有的FLY工程中导入其他矢量数据,如SHP.WFS图层.KML图层时,总会看到类似下图的提示信息: 有些用户问,如何能屏 ...
- openssl生成签名与验证签名
继上一篇RSA对传输信息进行加密解密,再写个生成签名和验证签名. 一般,安全考虑,比如接入支付平台时,请求方和接收方要互相验证是否是你,就用签名来看. 签名方式一般两种,对称加密和非对称加密.对称加密 ...
- BZOJ3451 Normal 期望、点分治、NTT
BZOJCH传送门 题目大意:给出一棵树,求对其进行随机点分治的复杂度期望 可以知道一个点的贡献就是其点分树上的深度,也就是这个点在点分树上的祖先数量+1. 根据期望的线性性,考虑一个点对\((x,y ...
- C# out关键词应用
C#的out关键词,即是方法内赋值. 返回处理后的结果.打个比喻,有一个宽度的需要按比例缩放.标准宽度为88,如宽度大于这个标准宽度的话,按照0.8进行缩放.如果小于标准宽度,输出的结果没变化. 此时 ...
- C# 套接字编程:Scoket,我用Scoket做的C# Windows应用程序如下:
首先请允许我做一个截图: 以上,是我服务端设计 我们知道:服务器端口数最大可以有65535个,但是实际上常用的端口才几十个,由此可以看出未定义的端口相当多.因此,我们可以通过程序随机获取一个当前可用的 ...
- [HAOI2017]供给侧改革[离线、trie]
题意 题目链接 分析 由于数据随机所以 LCP 不会很长,维护每个位置后 40 个字符构成的01串. 将询问离线维护,以当前右端点为 R 的每个长度的 LCP 的第一个出现位置 f(这个信息显然是单调 ...
- 我的物联网项目专题移到网站:http://51jdk.com
我的物联网项目专题移到网站:http://51jdk.com
- 仓储层接口IBaseRepository解析
//代码调用由业务层调用,调用方式详见源代码的业务层,升级直接替换TT模板即可,无需覆盖系统using System; using System.Collections.Generic; using ...
- Charles使用详解
前言: Charles是在 Mac 下常用的网络封包截取工具,在做移动开发时,我们为了调试与服务器端的网络通讯协议,常常需要截取网络封包来分析. 一.主界面介绍 二.网页抓包 启动 Cha ...
- logstash 解析日志文件
input { file { path => "/usr/local/test/log.log" } } filter { grok { match => { &quo ...