题目描述

在地面上有一个水箱,它的俯视图被划分成了n行m列个方格,相邻两个方格之间有一堵厚度可以忽略不计的墙,水
箱与外界之间有一堵高度无穷大的墙,因此水不可能漏到外面。已知水箱内每个格子的高度都是[0,H]之间的整数
,请统计有多少可能的水位情况。因为答案可能很大,请对10^9+7取模输出。两个情况不同当且仅当存在至少一个
方格的水位在两个情况中不同。

输入

第一行包含三个正整数n,m,H(n*m<=500000,1<=H<=10^9)。
接下来n行,每行m-1个整数a[i][j](1<=a[i][j]<=H),表示(i,j)和(i,j+1)之间的墙的高度。
接下来n-1行,每行m个整数b[i][j](1<=b[i][j]<=H),表示(i,j)和(i+1,j)之间的墙的高度。

输出

输出一行一个整数,即方案数模10^9+7的结果。

样例输入

3 2 2
1
1
1
1 2
1 1

样例输出

65
HINT
要么全部格子水位都是2,要么全部格子水位都在[0,1]之间,共1+2^6=65种情况。
 
容易看出这是个网格图,将每个格子看作一个点,格子与格子间的墙看作是点与点之间的边,墙高就是边权。
对于每个点,只有与它相连的边权最小的边是有用的,在这个边权之下这个点的水位可以是任意的。
一旦超过了这个边权,那么这个点与那条边连向的点的水位就一定要保持相同了。
那么我们可以按边权从小到大的顺序合并每个点(或联通块),同时记录每个联通块里的最大边权以及每个联通块中的方案数。
因为一个联通块超过其中最大边后,联通块中每个点的水位都是一致的,所以当合并两个联通块时设两个联通块中的方案数分别是g1,g2;两个联通块中最大边分别是h1,h2,合并这两个联通块的边权为v,那么合并后得到的联通块的方案数就是(g1+v-h1)*(g1+v-h2)。
当所有联通块都合并之后(也就是所有点都连通之后)所有点的水位是一同升高的,只要把整个联通块的方案数加上H-最后一次合并的边权就好了。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int n,m,H;
int x;
int f[500010];
int tot;
ll g[500010];
int h[500010];
int mod=1e9+7;
struct node
{
int x;
int y;
int v;
}s[1000010];
int cnt;
void add(int x,int y,int v)
{
s[++cnt].x=x;
s[cnt].y=y;
s[cnt].v=v;
}
bool cmp(node s,node t)
{
return s.v<t.v;
}
int find(int x)
{
if(f[x]==x)
{
return x;
}
return f[x]=find(f[x]);
}
int main()
{
scanf("%d%d%d",&n,&m,&H);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m-1;j++)
{
scanf("%d",&x);
add((i-1)*m+j,(i-1)*m+j+1,x);
}
}
for(int i=1;i<=n-1;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&x);
add((i-1)*m+j,i*m+j,x);
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
f[(i-1)*m+j]=(i-1)*m+j;
g[(i-1)*m+j]=1;
}
}
sort(s+1,s+1+cnt,cmp);
for(int i=1;i<=cnt;i++)
{
int fx=find(s[i].x);
int fy=find(s[i].y);
if(fx!=fy)
{
g[fx]=(g[fx]+s[i].v-h[fx])*(g[fy]+s[i].v-h[fy])%mod;
f[fy]=fx;
h[fx]=s[i].v;
}
}
printf("%lld",(g[find(1)]+H-h[find(1)])%mod);
}

BZOJ5101[POI2018]Powódź——并查集的更多相关文章

  1. 【BZOJ5101】[POI2018]Powód 并查集

    [BZOJ5101][POI2018]Powód Description 在地面上有一个水箱,它的俯视图被划分成了n行m列个方格,相邻两个方格之间有一堵厚度可以忽略不计的墙,水箱与外界之间有一堵高度无 ...

  2. [bzoj5101][POI2018]Powódź_并查集

    Powódź bzoj-5101 POI-2018 题目大意:在地面上有一个水箱,它的俯视图被划分成了$n$行$m$列个方格,相邻两个方格之间有一堵厚度可以忽略不计的墙,水箱与外界之间有一堵高度无穷大 ...

  3. BZOJ5101 POI2018Powódź(并查集)

    如果某个格子的积水量超过了该格子的某个挡板高度,那么挡板另一端的积水量就会与其相同.看起来是一个不断合并的过程,考虑并查集.枚举深度,维护每个连通块内的方案数,深度超过某挡板高度时,将两端的连通块合并 ...

  4. BZOJ5101 : [POI2018]Powód

    求出Kruskal重构树,那么重构树上每个点的取值范围是定的. 考虑树形DP,则对于一个点,要么所有点水位相同,要么还未发生合并. 故$dp[x]=up[x]-down[x]+1+dp[l[x]]\t ...

  5. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  6. 关押罪犯 and 食物链(并查集)

    题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"( ...

  7. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

  8. bzoj1854--并查集

    这题有一种神奇的并查集做法. 将每种属性作为一个点,每种装备作为一条边,则可以得到如下结论: 1.如果一个有n个点的连通块有n-1条边,则我们可以满足这个连通块的n-1个点. 2.如果一个有n个点的连 ...

  9. [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

随机推荐

  1. OK6410移植linux3.3.1

    本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 首先修改资源代码,进入arch/arm/mach-s3c64xx/目录,在这里我们使用mini6410的资源配置 ...

  2. 什么是Mixin模式:带实现的协议

    Mixin(织入)模式并不是GOF的<设计模式>归纳中的一种,但是在各种语言以及框架都会发现该模式(或者思想)的一些应用.简单来说,Mixin是带有全部实现或者部分实现的接口,其主要作用是 ...

  3. BZOJ1758 WC2010 重建计划 二分答案、点分治、单调队列

    传送门 看到平均数最大,自然地想到二分答案.那么我们的$check$函数就是要求:是否存在一条长度在$[L,U]$的路径,满足其权值和$\geq 0$. 看到长度在$[L,U]$,自然地想到点分治求解 ...

  4. DIV实现水平或垂直滚动条

    添加样式: 在html中,需要创建2层div来实现.一个div包含另一个div: 效果:

  5. Can not find the tag library descriptor for "http://java.sun.com/jsp/jstl/core"

    问题描述 今天写jsp的时候想用JSTL的一些标签,但是引用的时候碰到这个问题. 解决办法 一.看是否引用jstl.jar包,如果没有,则可以下载相应版本的jstr.jar包,并放入WEB-INF的l ...

  6. mui 下拉刷新和上拉加载

    <body> mui文档提供了两种不同模式的下拉刷新,具体情况看文档,链接:http://dev.dcloud.net.cn/mui/pulldown/ 单 webview 模式和 双 w ...

  7. 【JVM.8】类加载及执行子系统的案例与实战

    一. 案例分析 1. Tomcat:正统的类加载器架构 主流的Java Web服务器,如Tomcat.Jetty.WebLogic.WebSphere或其他服务器,都实现了自己定义的类加载器(一般都不 ...

  8. 【转载】固态硬盘的S.M.A.R.T详解

    文章来源于: 瑞耐斯存储技术 兵哥写这篇文章,是因为在测试的过程中看到了 SSD存在偶尔有性能下降的情况,经分析为S.M.A.R.T命令所导致,虽然这种情况看似不严重,但如果应用在诸如数据采集等关键性 ...

  9. jenkins 构建后发送钉钉消息通知(插件)

    钉钉,越来越多的公司采用,那么我们在持续集成中,也可以直接选择钉钉插件的,在之前的博客中 ,对发送的钉钉消息进行了定制,那样的话会开启一个新的任务, 其实今天呢,我们可以直接安装一个插件就可以发送了, ...

  10. Mybatis中 collection 和 association 的区别?

    public class A{ private B b1; private List<B> b2;} 在映射b1属性时用association标签,(一对一的关系) 映射b2时用colle ...