题意

题目链接

Sol

神仙题Orz

后缀自动机 + 线段树合并。。。

首先可以转化一下模型(想不到qwq):问题可以转化为统计\(B\)中每个前缀在\(A\)中出现的次数。(画一画就出来了)

然后直接对\(A\)串建SAM,线段树合并维护一下siz就行了

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 4e5 + 10, SS = 1e7 + 10;
int N, M;
char S[MAXN], T[MAXN];
int fa[MAXN], len[MAXN], ch[MAXN][11], root = 1, las = 1, tot = 1;
vector<int> par[MAXN];
int insert(int x) {
int now = ++tot, pre = las; las = now; len[now] = len[pre] + 1;
for(; pre && !ch[pre][x]; pre = fa[pre]) ch[pre][x] = now;
if(!pre) fa[now] = root;
else {
int q = ch[pre][x];
if(len[pre] + 1 == len[q]) fa[now] = q;
else {
int nq = ++tot; fa[nq] = fa[q]; len[nq] = len[pre] + 1;
memcpy(ch[nq], ch[q], sizeof(ch[q]));
for(; pre && ch[pre][x] == q; pre = fa[pre]) ch[pre][x] = nq;
fa[q] = fa[now] = nq;
}
}
return las;
}
void Build() {
for(int i = 1; i <= tot; i++) par[fa[i]].push_back(i);
}
int rt[SS], ls[SS], rs[SS], sum[SS], cnt;
void update(int k) {
sum[k] = sum[ls[k]] + sum[rs[k]];
}
void Modify(int &k, int l, int r, int p, int v) {
if(!k) k = ++cnt;
if(l == r) {sum[k]++; return ;}
int mid = l + r >> 1;
if(p <= mid) Modify(ls[k], l, mid, p, v);
else Modify(rs[k], mid + 1, r, p, v);
update(k);
}
int Merge(int x, int y) {
if(!x || !y) return x ^ y;
int nw = ++cnt;
if(!ls[x] && !rs[x]) {sum[nw] = sum[x] + sum[y]; return nw;}
ls[nw] = Merge(ls[x], ls[y]);
rs[nw] = Merge(rs[x], rs[y]);
update(nw);
return nw;
}
int Get(int k, int l, int r) {
if(!k) return N;
if(l == r) return l;
int mid = l + r >> 1;
if(sum[ls[k]]) return Get(ls[k], l, mid);
else return Get(rs[k], mid + 1, r);
}
int Query(int k, int l, int r, int ql, int qr) {
if(!k || (l > r) || (ql > qr)) return 0;
if(ql <= l && r <= qr)
return sum[k];
int mid = l + r >> 1;
if(ql > mid) return Query(rs[k], mid + 1, r, ql, qr);
else if(qr <= mid) return Query(ls[k], l, mid, ql, qr);
else return Query(ls[k], l, mid, ql, qr) + Query(rs[k], mid + 1, r, ql, qr);
}
void dfs(int x) {
for(auto &to : par[x]) {
dfs(to);
rt[x] = Merge(rt[x], rt[to]);
}
}
void solve() {
int n = strlen(T + 1), now = root, flag = 0, Lim = 0;
for(int i = 1; i <= n; i++) {
int nxt = T[i] - '0';
if(!ch[now][nxt]) {flag = 1; break;}
now = ch[now][nxt];
if(i == n)
Lim = Get(rt[now], 1, N) - n;//µÚÒ»´Î³öÏÖµÄλÖÃ
}
int ans = 0;
if(flag) ans = N;
else ans = Lim + n;
now = root;
for(int i = 1; i <= n; i++) {
int nxt = T[i] - '0';
if(!ch[now][nxt]) break;
now = ch[now][nxt];
if(flag) ans += Query(rt[now], 1, N, 1, N);
else ans += Query(rt[now], 1, N, 1, Lim + i - 1);
}
cout << ans << '\n';
}
int main() {
//freopen("1.in", "r", stdin); freopen("b.out", "w", stdout);
cin >> N;
scanf("%s", S + 1);
for(int i = 1; i <= N; i++)
Modify(rt[insert(S[i] - '0')], 1, N, i, 1);
Build();
dfs(root);
cin >> M;
for(int i = 1; i <= M; i++) {
scanf("%s", T + 1);
solve();
}
return 0;
}
/*
7
1090901
4
0901
87650
109
090
*/

BZOJ3413: 匹配(后缀自动机 线段树合并)的更多相关文章

  1. BZOJ 3413 匹配 (后缀自动机+线段树合并)

    题目大意: 懒得概括了 神题,搞了2个半晚上,还认为自己的是对的...一直调不过,最后终于在jdr神犇的帮助下过了这道题 线段树合并该是这道题最好理解且最好写的做法了,貌似主席树也行?但线段树合并这个 ...

  2. cf666E. Forensic Examination(广义后缀自动机 线段树合并)

    题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并 首先对所有的\(t_i\)建个广义后缀自动机,这样可以得到所有子串信息. 考虑把询问离线,然后把\(S\)拿到自动机上跑,同时维护一下 ...

  3. bzoj5417/luoguP4770 [NOI2018]你的名字(后缀自动机+线段树合并)

    bzoj5417/luoguP4770 [NOI2018]你的名字(后缀自动机+线段树合并) bzoj Luogu 给出一个字符串 $ S $ 及 $ q $ 次询问,每次询问一个字符串 $ T $ ...

  4. [Luogu5161]WD与数列(后缀数组/后缀自动机+线段树合并)

    https://blog.csdn.net/WAautomaton/article/details/85057257 解法一:后缀数组 显然将原数组差分后答案就是所有不相交不相邻重复子串个数+n*(n ...

  5. 模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合)

    模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合) Code: #include <bits/stdc++.h> using namespace std; #define ...

  6. 【BZOJ4556】[TJOI2016&HEOI2016] 字符串(后缀自动机+线段树合并+二分)

    点此看题面 大致题意: 给你一个字符串\(s\),每次问你一个子串\(s[a..b]\)的所有子串和\(s[c..d]\)的最长公共前缀. 二分 首先我们可以发现一个简单性质,即要求最长公共前缀,则我 ...

  7. BZOJ5417[Noi2018]你的名字——后缀自动机+线段树合并

    题目链接: [Noi2018]你的名字 题目大意:给出一个字符串$S$及$q$次询问,每次询问一个字符串$T$有多少本质不同的子串不是$S[l,r]$的子串($S[l,r]$表示$S$串的第$l$个字 ...

  8. CF 666E Forensic Examination——广义后缀自动机+线段树合并

    题目:http://codeforces.com/contest/666/problem/E 对模式串建广义后缀自动机,询问的时候把询问子串对应到广义后缀自动机的节点上,就处理了“区间”询问. 还要处 ...

  9. NOI 2018 你的名字 (后缀自动机+线段树合并)

    题目大意:略 令$ION2017=S,ION2018=T$ 对$S$建$SAM$,每次都把$T$放进去跑,求出结尾是i的前缀串,能匹配上$S$的最长后缀长度为$f_{i}$ 由于$T$必须在$[l,r ...

随机推荐

  1. RunTime之类与对象

    我们知道,Objective-C是一门动态语言,它将很多静态语言在编译时期做的事放到了运行时来处理.用C++编写的程序通过编译器直接把函数地址硬编码进入可执行文件:而Objective-C无法通过编译 ...

  2. DOM扩展:DOM API的进一步增强[总结篇-上]

    DOM1级主要定义了文档的底层结构,并提供了基本的查询操作的API,总体而言这些API已经比较完善,我们可以通过这些API完成大部分的DOM操作.然而,为了扩展DOM API的功能,同时进一步提高DO ...

  3. spring boot开发笔记——mybatis

    概述   mybatis框架的优点,就不用多说了,今天这边干货主要讲mybatis的逆向工程,以及springboot的集成技巧,和分页的使用   因为在日常的开发中,当碰到特殊需求之类会手动写一下s ...

  4. unable to load http://docbook.sourceforge.net/release/xsl/current/html/docbook.xsl

    问题:unable to load http://docbook.sourceforge.net/release/xsl/current/html/docbook.xsl 解决:yum -y inst ...

  5. 美团2018年CodeM大赛-初赛B轮 C题低位值

    试题链接:https://www.nowcoder.com/acm/contest/151/C 定义lowbit(x) =x&(-x),即2^(p-1) (其中p为x的二进制表示中,从右向左数 ...

  6. Swift5 语言指南(十五) 继承

    类可以从另一个类继承方法,属性和其他特性.当一个类继承自另一个类时,继承类称为子类,它继承的类称为其超类.继承是一种基本行为,它将类与Swift中的其他类型区分开来. Swift中的类可以调用和访问属 ...

  7. JS  实现九宫格算法

    九宫格算法核心: 利用控件索引index计算出控件所在的行数和列数: 利用控件计算出left距离: 利用控件计算出top距离: 写特效时需要用到定位 公式: 行 row=parseInt(i/cols ...

  8. Java架构技术进阶之:从分布式到微服务,深挖Service Mesh

    自从几十年前第一次引入分布式系统这个概念以来,出现了很多原来根本想象不到的分布式系统使用案例,但同时也引入了各种各样的新问题. 当这些系统还是比较少比较简单的时候,工程师可以通过减少远程交互的次数来解 ...

  9. 关于 Nginx 配置 WebSocket 400 问题

    今天把项目升级了 asp.net core 到 2.1 的版本,使用了 signalr  的功能,由于阿里云不支持 websocket 协议,所以使用了 nginx 代理方式来解决,后续就报了一个登陆 ...

  10. mpvue支持小程序的分包加载

    目录 clone mpvue-quickstart 模板 分包体验 现有项目的分包改造 这个功能可以说是让我们这些用 mpvue 的等的很焦灼,眼看着项目的大小一天天地逼近 2M,mpvue 还不能很 ...