1. updateStateByKey 解释:

    以DStream中的数据进行按key做reduce操作,然后对各个批次的数据进行累加

    在有新的数据信息进入或更新时。能够让用户保持想要的不论什么状。使用这个功能须要完毕两步:

    1) 定义状态:能够是随意数据类型

    2) 定义状态更新函数:用一个函数指定怎样使用先前的状态。从输入流中的新值更新状态。

    对于有状态操作,要不断的把当前和历史的时间切片的RDD累加计算,随着时间的流失,计算的数据规模会变得越来越大。

  2. updateStateByKey源代码:

    /**

    • Return a new “state” DStream where the state for each key is updated by applying
    • the given function on the previous state of the key and the new values of the key.
    • org.apache.spark.Partitioner is used to control the partitioning of each RDD.
    • @param updateFunc State update function. If this function returns None, then
    • corresponding state key-value pair will be eliminated.
    • @param partitioner Partitioner for controlling the partitioning of each RDD in the new
    • DStream.
    • @param initialRDD initial state value of each key.
    • @tparam S State type

      */

      def updateStateByKey[S: ClassTag](

      updateFunc: (Seq[V], Option[S]) => Option[S],

      partitioner: Partitioner,

      initialRDD: RDD[(K, S)]

      ): DStream[(K, S)] = {

      val newUpdateFunc = (iterator: Iterator[(K, Seq[V], Option[S])]) => {

      iterator.flatMap(t => updateFunc(t._2, t._3).map(s => (t._1, s)))

      }

      updateStateByKey(newUpdateFunc, partitioner, true, initialRDD)

      }
  3. 代码实现

    • StatefulNetworkWordCount

      object StatefulNetworkWordCount {
      def main(args: Array[String]) {
      if (args.length < 2) {
      System.err.println("Usage: StatefulNetworkWordCount <hostname> <port>")
      System.exit(1)
      } Logger.getLogger("org.apache.spark").setLevel(Level.WARN) val updateFunc = (values: Seq[Int], state: Option[Int]) => {
      val currentCount = values.sum val previousCount = state.getOrElse(0) Some(currentCount + previousCount)
      } val newUpdateFunc = (iterator: Iterator[(String, Seq[Int], Option[Int])]) => {
      iterator.flatMap(t => updateFunc(t._2, t._3).map(s => (t._1, s)))
      } val sparkConf = new SparkConf().setAppName("StatefulNetworkWordCount").setMaster("local")
      // Create the context with a 1 second batch size
      val ssc = new StreamingContext(sparkConf, Seconds(1))
      ssc.checkpoint(".") // Initial RDD input to updateStateByKey
      val initialRDD = ssc.sparkContext.parallelize(List(("hello", 1), ("world", 1))) // Create a ReceiverInputDStream on target ip:port and count the
      // words in input stream of \n delimited test (eg. generated by 'nc')
      val lines = ssc.socketTextStream(args(0), args(1).toInt)
      val words = lines.flatMap(_.split(" "))
      val wordDstream = words.map(x => (x, 1)) // Update the cumulative count using updateStateByKey
      // This will give a Dstream made of state (which is the cumulative count of the words)
      val stateDstream = wordDstream.updateStateByKey[Int](newUpdateFunc,
      new HashPartitioner (ssc.sparkContext.defaultParallelism), true, initialRDD)
      stateDstream.print()
      ssc.start()
      ssc.awaitTermination()
      }
      }
    • NetworkWordCount

import org.apache.spark.SparkConf
import org.apache.spark.HashPartitioner
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.StreamingContext._ object NetworkWordCount {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println("Usage: NetworkWordCount <hostname> <port>")
System.exit(1)
} val sparkConf = new SparkConf().setAppName("NetworkWordCount")
val ssc = new StreamingContext(sparkConf, Seconds(10))
//使用updateStateByKey前须要设置checkpoint
ssc.checkpoint("hdfs://master:8020/spark/checkpoint") val addFunc = (currValues: Seq[Int], prevValueState: Option[Int]) => {
//通过Spark内部的reduceByKey按key规约。然后这里传入某key当前批次的Seq/List,再计算当前批次的总和
val currentCount = currValues.sum
// 已累加的值
val previousCount = prevValueState.getOrElse(0)
// 返回累加后的结果。是一个Option[Int]类型
Some(currentCount + previousCount)
} val lines = ssc.socketTextStream(args(0), args(1).toInt)
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1)) //val currWordCounts = pairs.reduceByKey(_ + _)
//currWordCounts.print() val totalWordCounts = pairs.updateStateByKey[Int](addFunc)
totalWordCounts.print() ssc.start()
ssc.awaitTermination()
}
}
  • WebPagePopularityValueCalculator
package com.spark.streaming

import org.apache.spark.{HashPartitioner, SparkConf}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Duration, Seconds, StreamingContext} /**
* ━━━━━━神兽出没━━━━━━
*    ┏┓   ┏┓
*   ┏┛┻━━━┛┻┓
*   ┃       ┃
*   ┃   ━   ┃
*   ┃ ┳┛ ┗┳ ┃
*   ┃       ┃
*   ┃   ┻   ┃
*   ┃       ┃
*   ┗━┓   ┏━┛
*     ┃   ┃神兽保佑, 永无BUG!
*      ┃   ┃Code is far away from bug with the animal protecting
*     ┃   ┗━━━┓
*     ┃       ┣┓
*     ┃       ┏┛
*     ┗┓┓┏━┳┓┏┛
*      ┃┫┫ ┃┫┫
*      ┗┻┛ ┗┻┛
* ━━━━━━感觉萌萌哒━━━━━━
* Module Desc:
* User: wangyue
* DateTime: 15-11-9上午10:50
*/
object WebPagePopularityValueCalculator { private val checkpointDir = "popularity-data-checkpoint"
private val msgConsumerGroup = "user-behavior-topic-message-consumer-group" def main(args: Array[String]) { if (args.length < 2) {
println("Usage:WebPagePopularityValueCalculator zkserver1:2181, zkserver2: 2181, zkserver3: 2181 consumeMsgDataTimeInterval (secs) ")
System.exit(1)
} val Array(zkServers, processingInterval) = args
val conf = new SparkConf().setAppName("Web Page Popularity Value Calculator") val ssc = new StreamingContext(conf, Seconds(processingInterval.toInt))
//using updateStateByKey asks for enabling checkpoint
ssc.checkpoint(checkpointDir) val kafkaStream = KafkaUtils.createStream(
//Spark streaming context
ssc,
//zookeeper quorum. e.g zkserver1:2181,zkserver2:2181,...
zkServers,
//kafka message consumer group ID
msgConsumerGroup,
//Map of (topic_name -> numPartitions) to consume. Each partition is consumed in its own thread
Map("user-behavior-topic" -> 3))
val msgDataRDD = kafkaStream.map(_._2) //for debug use only
//println("Coming data in this interval...")
//msgDataRDD.print()
// e.g page37|5|1.5119122|-1
val popularityData = msgDataRDD.map { msgLine => {
val dataArr: Array[String] = msgLine.split("\\|")
val pageID = dataArr(0)
//calculate the popularity value
val popValue: Double = dataArr(1).toFloat * 0.8 + dataArr(2).toFloat * 0.8 + dataArr(3).toFloat * 1
(pageID, popValue)
}
} //sum the previous popularity value and current value
//定义一个匿名函数去把网页热度上一次的计算结果值和新计算的值相加,得到最新的热度值。 val updatePopularityValue = (iterator: Iterator[(String, Seq[Double], Option[Double])]) => {
iterator.flatMap(t => {
val newValue: Double = t._2.sum
val stateValue: Double = t._3.getOrElse(0);
Some(newValue + stateValue)
}.map(sumedValue => (t._1, sumedValue)))
} val initialRDD = ssc.sparkContext.parallelize(List(("page1", 0.00))) //调用 updateStateByKey 原语并传入上面定义的匿名函数更新网页热度值。
val stateDStream = popularityData.updateStateByKey[Double](updatePopularityValue,
new HashPartitioner(ssc.sparkContext.defaultParallelism), true, initialRDD) //set the checkpoint interval to avoid too frequently data checkpoint which may
//may significantly reduce operation throughput
stateDStream.checkpoint(Duration(8 * processingInterval.toInt * 1000)) //after calculation, we need to sort the result and only show the top 10 hot pages
//最后得到最新结果后,须要对结果进行排序。最后打印热度值最高的 10 个网页。 stateDStream.foreachRDD { rdd => {
val sortedData = rdd.map { case (k, v) => (v, k) }.sortByKey(false)
val topKData = sortedData.take(10).map { case (v, k) => (k, v) }
topKData.foreach(x => {
println(x)
})
}
} ssc.start()
ssc.awaitTermination()
}
}

參考文章:

http://blog.cloudera.com/blog/2014/11/how-to-do-near-real-time-sessionization-with-spark-streaming-and-apache-hadoop/

https://github.com/apache/spark/blob/branch-1.3/streaming/src/main/scala/org/apache/spark/streaming/dstream/PairDStreamFunctions.scala

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/streaming/StatefulNetworkWordCount.scala

http://stackoverflow.com/questions/28998408/spark-streaming-example-calls-updatestatebykey-with-additional-parameters

http://stackoverflow.com/questions/27535668/spark-streaming-groupbykey-and-updatestatebykey-implementation

尊重原创,未经同意不得转载:

http://blog.csdn.net/stark_summer/article/details/47666337

spark streaming updateStateByKey 使用方法的更多相关文章

  1. Spark Streaming updateStateByKey案例实战和内幕源码解密

    本节课程主要分二个部分: 一.Spark Streaming updateStateByKey案例实战二.Spark Streaming updateStateByKey源码解密 第一部分: upda ...

  2. spark streaming updateStateByKey 用法

    object NetworkWordCount { def main(args: Array[String]) { ) { System.err.println("Usage: Networ ...

  3. Spark Streaming updateStateByKey和mapWithState源码解密

    本篇从二个方面进行源码分析: 一.updateStateByKey解密 二.mapWithState解密 通过对Spark研究角度来研究jvm.分布式.图计算.架构设计.软件工程思想,可以学到很多东西 ...

  4. 55、Spark Streaming:updateStateByKey以及基于缓存的实时wordcount程序

    一.updateStateByKey 1.概述 SparkStreaming 7*24 小时不间断的运行,有时需要管理一些状态,比如wordCount,每个batch的数据不是独立的而是需要累加的,这 ...

  5. Spark Streaming状态管理函数updateStateByKey和mapWithState

    Spark Streaming状态管理函数updateStateByKey和mapWithState 一.状态管理函数 二.mapWithState 2.1关于mapWithState 2.2mapW ...

  6. spark streaming - kafka updateStateByKey 统计用户消费金额

    场景 餐厅老板想要统计每个用户来他的店里总共消费了多少金额,我们可以使用updateStateByKey来实现 从kafka接收用户消费json数据,统计每分钟用户的消费情况,并且统计所有时间所有用户 ...

  7. Spark Streaming中空batches处理的两种方法(转)

    原文链接:Spark Streaming中空batches处理的两种方法 Spark Streaming是近实时(near real time)的小批处理系统.对给定的时间间隔(interval),S ...

  8. Spark之 Spark Streaming整合kafka(并演示reduceByKeyAndWindow、updateStateByKey算子使用)

    Kafka0.8版本基于receiver接受器去接受kafka topic中的数据(并演示reduceByKeyAndWindow的使用) 依赖 <dependency> <grou ...

  9. kafka broker Leader -1引起spark Streaming不能消费的故障解决方法

    一.问题描述:Kafka生产集群中有一台机器cdh-003由于物理故障原因挂掉了,并且系统起不来了,使得线上的spark Streaming实时任务不能正常消费,重启实时任务都不行.查看kafka t ...

随机推荐

  1. ORA-01012:not logged on的解决办法

    conn / as sysdba 报错ORA-01012: not logged on 发生原因:关闭数据库是shutdown 后面没有接关闭参数中的任何一个. nomal ————- —-所有连接都 ...

  2. day03_12/13/2016_bean的管理之初始化和销毁

  3. Data URI scheme:data:image/jpeg;

    今天在用一个croppic的jQuery裁剪图片的插件的时候,发现在后台获取图片时,无法通过Request.File获取了,但是通过Request.Form[]可以.用firebug跟了一下发现,图片 ...

  4. MyBatis ((一对多和多对一配置)实现持久化操作 之二)

    注: 此文中的实体类还是沿用上一章的Emp和Dept两个类 还是老样子,不细说 直接上代码 01.在emp.xml中  配置和Dept的多对一的相关信息 <?xml version=" ...

  5. Android彻底组件化demo发布

    今年6月份开始,我开始负责对"得到app"的android代码进行组件化拆分,在动手之前我查阅了很多组件化或者模块化的文章,虽然有一些收获,但是很少有文章能够给出一个整体且有效的方 ...

  6. 图解TCP/IP笔记(3)——IP协议

    目录 IP协议 IP寻址 IP地址组成 IP地址分类 广播地址 子网掩码 全局地址和私有地址 IP协议 跨越不同数据链路,实现两端节点之间的数据包传输 数据链路:只负责某一个区间之间的通信传输 IP协 ...

  7. JS——事件的绑定与解绑

    1.绑定形式 ele.addEventListener(evtName, fn) ele["on" + evtName] = function () {} ele.onclick ...

  8. c#符号含义

    属性:(带手型图标)方法:(紫红色菱形)事件:(闪电)字段:(蓝色菱形) 还有很多,具体图标不好描述命名空间,类,接口,值类,枚举,清单或类信息项等

  9. Linux 下phpstudy的安装使用补充说明

    (1)使用方法 在终端中使用sudo 或者 使用管理员账号运行 phpstudy start 开启 (2)命令列表: phpstudy start | stop | restart        开启 ...

  10. Linux cat 命令

    cat命令是linux下的一个文本输出命令,通常是用于观看某个文件的内容的:cat主要有三大功能:1.一次显示整个文件.$ cat   filename2.从键盘创建一个文件.$ cat  >  ...