转载请标明出处:http://blog.csdn.net/bigbigdata/article/details/47310657

DAGScheduler通过调用submitStage来提交stage。实现例如以下:

  private def submitStage(stage: Stage) {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
logDebug("submitStage(" + stage + ")")
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
//< 获取该stage未提交的父stages,并按stage id从小到大排序
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: " + missing)
if (missing.isEmpty) {
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
//< 若无未提交的父stage, 则提交该stage相应的tasks
submitMissingTasks(stage, jobId.get)
} else {
//< 若存在未提交的父stage, 依次提交全部父stage (若父stage也存在未提交的父stage, 则提交之, 依次类推); 并把该stage增加到等待stage队列中
for (parent <- missing) {
submitStage(parent)
}
waitingStages += stage
}
}
} else {
abortStage(stage, "No active job for stage " + stage.id)
}
}

submitStage先调用getMissingParentStages来获取參数stageX(这里为了区分,取名为stageX)是否有未提交的父stages,若有。则依次递归(按stage id从小到大排列。也就是stage是从后往前提交的)提交父stages,并将stageX增加到waitingStages: HashSet[Stage]中。对于要依次提交的父stage。也是如此。

getMissingParentStagesDAGScheduler划分stage中介绍的getParentStages有点像,但不同的是不再须要划分stage,并对每一个stage的状态做了推断,源代码及凝视例如以下:

//< 以參数stage为起点,向前遍历全部stage,推断stage是否为未提交,若使则增加missing中
private def getMissingParentStages(stage: Stage): List[Stage] = {
//< 未提交的stage
val missing = new HashSet[Stage]
//< 存储已经被訪问到得RDD
val visited = new HashSet[RDD[_]] val waitingForVisit = new Stack[RDD[_]]
def visit(rdd: RDD[_]) {
if (!visited(rdd)) {
visited += rdd
if (getCacheLocs(rdd).contains(Nil)) {
for (dep <- rdd.dependencies) {
dep match {
//< 若为宽依赖。生成新的stage
case shufDep: ShuffleDependency[_, _, _] =>
//< 这里调用getShuffleMapStage不像在getParentStages时须要划分stage。而是直接依据shufDep.shuffleId获取相应的ShuffleMapStage
val mapStage = getShuffleMapStage(shufDep, stage.jobId)
if (!mapStage.isAvailable) {
// 若stage得状态为available则为未提交stage
missing += mapStage
}
//< 若为窄依赖,那就属于同一个stage。并将依赖的RDD放入waitingForVisit中,以可以在以下的while中继续向上visit。直至遍历了整个DAG图
case narrowDep: NarrowDependency[_] =>
waitingForVisit.push(narrowDep.rdd)
}
}
}
}
}
waitingForVisit.push(stage.rdd)
while (waitingForVisit.nonEmpty) {
visit(waitingForVisit.pop())
}
missing.toList
}

上面提到,若stageX存在未提交的父stages。则先提交父stages;那么,假设stageX没有未提交的父stage呢(比方。包括从HDFS读取数据生成HadoopRDD的那个stage是没有父stage的)?

这时会调用submitMissingTasks(stage, jobId.get),參数就是stageX及其相应的jobId.get。这个函数便是我们时常在其它文章或书籍中看到的将stage与taskSet相应起来,然后DAGScheduler将taskSet提交给TaskScheduler去运行的实施者。

这个函数的实现比較长。以下分段说明。

Step1: 得到RDD中须要计算的partition

对于Shuffle类型的stage,须要推断stage中是否缓存了该结果;对于Result类型的Final Stage。则推断计算Job中该partition是否已经计算完毕。

这么做(没有直接提交全部tasks)的原因是,stage中某个task运行失败其它运行成功的时候就须要找出这个失败的task相应要计算的partition而不是要计算全部partition

  private def submitMissingTasks(stage: Stage, jobId: Int) {
stage.pendingTasks.clear() //< 首先得到RDD中须要计算的partition
//< 对于Shuffle类型的stage,须要推断stage中是否缓存了该结果;
//< 对于Result类型的Final Stage,则推断计算Job中该partition是否已经计算完毕
//< 这么做的原因是。stage中某个task运行失败其它运行成功地时候就须要找出这个失败的task相应要计算的partition而不是要计算全部partition
val partitionsToCompute: Seq[Int] = {
stage match {
case stage: ShuffleMapStage =>
(0 until stage.numPartitions).filter(id => stage.outputLocs(id).isEmpty)
case stage: ResultStage =>
val job = stage.resultOfJob.get
(0 until job.numPartitions).filter(id => !job.finished(id))
}
}

Step2: 序列化task的binary

Executor可以通过广播变量得到它。每一个task运行的时候首先会反序列化

var taskBinary: Broadcast[Array[Byte]] = null
try {
// For ShuffleMapTask, serialize and broadcast (rdd, shuffleDep).
// For ResultTask, serialize and broadcast (rdd, func).
val taskBinaryBytes: Array[Byte] = stage match {
case stage: ShuffleMapStage =>
//< 对于ShuffleMapTask,将rdd及其依赖关系序列化。在Executor运行task之前会反序列化
closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef).array()
//< 对于ResultTask,对rdd及要在每一个partition上运行的func
case stage: ResultStage =>
closureSerializer.serialize((stage.rdd, stage.resultOfJob.get.func): AnyRef).array()
} //< 将序列化好的信息广播给全部的executor
taskBinary = sc.broadcast(taskBinaryBytes)
} catch {
// In the case of a failure during serialization, abort the stage.
case e: NotSerializableException =>
abortStage(stage, "Task not serializable: " + e.toString)
runningStages -= stage // Abort execution
return
case NonFatal(e) =>
abortStage(stage, s"Task serialization failed: $e\n${e.getStackTraceString}")
runningStages -= stage
return
}

Step3: 为每一个须要计算的partiton生成一个task

ShuffleMapStage相应的task全是ShuffleMapTask; ResultStage相应的全是ResultTask。task继承Serializable,要确保task是可序列化的。

val tasks: Seq[Task[_]] = stage match {
case stage: ShuffleMapStage =>
partitionsToCompute.map { id =>
val locs = getPreferredLocs(stage.rdd, id)
//< RDD相应的partition
val part = stage.rdd.partitions(id)
new ShuffleMapTask(stage.id, taskBinary, part, locs)
} case stage: ResultStage =>
val job = stage.resultOfJob.get
//< id为输出分区索引,表示reducerID
partitionsToCompute.map { id =>
val p: Int = job.partitions(id)
val part = stage.rdd.partitions(p)
val locs = getPreferredLocs(stage.rdd, p)
new ResultTask(stage.id, taskBinary, part, locs, id)
}
}

Step4: 提交tasks

先用tasks来初始化一个TaskSet对象。再调用TaskScheduler.submitTasks提交

stage.pendingTasks ++= tasks
logDebug("New pending tasks: " + stage.pendingTasks)
//< 提交TaskSet至TaskScheduler
taskScheduler.submitTasks(
new TaskSet(tasks.toArray, stage.id, stage.newAttemptId(), stage.jobId, properties))
//< 记录stage提交task的时间
stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
} else {

以上,介绍了提交stage和提交tasks的实现。本文若有纰漏,请批评指正。

[Spark源代码剖析] DAGScheduler提交stage的更多相关文章

  1. [Spark源代码剖析] DAGScheduler划分stage

    转载请标明出处:http://blog.csdn.net/bigbigdata/article/details/47293263 本文基于Spark 1.3.1 先上一些stage相关的知识点: DA ...

  2. 【Spark Core】TaskScheduler源代码与任务提交原理浅析2

    引言 上一节<TaskScheduler源代码与任务提交原理浅析1>介绍了TaskScheduler的创建过程,在这一节中,我将承接<Stage生成和Stage源代码浅析>中的 ...

  3. Spark源码剖析 - 任务提交与执行

    1. 任务概述 任务提交与执行过程: 1) build operator DAG:此阶段主要完成RDD的转换及DAG的构建: 2) split graph into stages of tasks:此 ...

  4. Spark源代码分析之六:Task调度(二)

    话说在<Spark源代码分析之五:Task调度(一)>一文中,我们对Task调度分析到了DriverEndpoint的makeOffers()方法.这种方法针对接收到的ReviveOffe ...

  5. 【原】Spark中Job的提交源码解读

    版权声明:本文为原创文章,未经允许不得转载. Spark程序程序job的运行是通过actions算子触发的,每一个action算子其实是一个runJob方法的运行,详见文章 SparkContex源码 ...

  6. [Apache Spark源代码阅读]天堂之门——SparkContext解析

    略微了解Spark源代码的人应该都知道SparkContext,作为整个Project的程序入口,其重要性不言而喻,很多大牛也在源代码分析的文章中对其做了非常多相关的深入分析和解读.这里,结合自己前段 ...

  7. Spark分析之DAGScheduler

    DAGScheduler概述:是一个面向Stage层面的调度器: 主要入参有: dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, ...

  8. 【原】 Spark中Task的提交源码解读

    版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Stage的提交 http://www.cnblogs.com/yourarebest/p/5356769.html Spark中 ...

  9. JDK1.7中的ThreadPoolExecutor源代码剖析

    JDK1. 7中的ThreadPoolExecutor 线程池,顾名思义一个线程的池子,池子里存放了非常多能够复用的线程,假设不用线程池相似的容器,每当我们须要创建新的线程时都须要去new Threa ...

随机推荐

  1. 4月17日 (PS:由于时间问题,现在才发,望老师见谅)疯狂猜成语-----第三次站立会议 参会人员:杨霏,袁雪,胡潇丹,郭林林,尹亚男,赵静娜

    疯狂猜成语-----第三次站立会议 参会人员:杨霏,袁雪,胡潇丹,郭林林,尹亚男,赵静娜 会议内容: 组员依次汇报自己的工作进度,并且提出自己在进行任务的过程中遇到的问题,是否解决以及解决办法. 以下 ...

  2. 3ds Max制作厨房贴图和纹理实例

    来源:CG游 使用软件:3ds Max 软件下载:www.xy3dsmax.com/xiazai.html 大家好,欢迎大家来阅读这个教程.这个教程是讲解我前不久制作的一个场景效果图.因为场景已经制作 ...

  3. linux上测试磁盘IO速度

    运维工作,经常要测试服务器硬件性能,以此来判断是否存在性能瓶颈. 下面介绍在linux上测试磁盘IO速度的工具: 1.hdparm CentOS中,安装的两种方法: 1) yum安装. # yum i ...

  4. 路飞学城Python-Day5

    48.字典的类型的详细方法字典的增加值dic["k1"] = "v1"字典的修改dic["k2"] = "v2"判断是否 ...

  5. 搭建appium环境

    1.下载jdk1.8  配置环境变量 JAVA_HOME---------->你的jdk路径 path---------------------->%JAVA_HOME%\bin;%JAV ...

  6. [USACO17DEC]Milk Measurement(平衡树)

    题意 最初,农夫约翰的每头奶牛每天生产G加仑的牛奶 (1≤G≤109)(1≤G≤10^9)(1≤G≤109) .由于随着时间的推移,奶牛的产奶量可能会发生变化,农夫约翰决定定期对奶牛的产奶量进行测量, ...

  7. 实战medusa暴力破解

     medusa介绍: 暴力破解工具:主要可以破解这些模块功能很强大 medusa  的安装 条件: 准备工作:(下载下面软件)   1 wget http://www.foofus.net/jmk/t ...

  8. You Probably Don’t Need a Message Queue

    原文地址 I’m a minimalist, and I don’t like to complicate software too early and unnecessarily. And addi ...

  9. 在WIN7、WIN10操作系统用WebDAV映射网络驱动器需要的操作

    如果WebDAV不是https的,win7默认是添加不上的,需要修改注册表使得WIN7同时支持http和https,默认只支持https,然后重启服务 某一服务器,配置好了WebDAV.用苹果电脑作客 ...

  10. mysql同步复制报Slave can not handle replication events with the checksum that master 错误

    slave服务器,查看状态时,发现下面的错误: Last_IO_Error: Got fatal error 1236 from master when reading data from binar ...