题目链接:

http://codeforces.com/contest/889/problem/C

题意:

给你 \(n\)和 \(k\)。

让你找一种全排列长度为\(n\)的 \(p\),满足存在下标 \(i\),\(p_i\)大于所有 \(p_j\),\(j\epsilon[1,i-1]\)同时大于所有\(p_i\),\(j\epsilon[i+1,i+k]\)。问你满足这样条件的排列有多少种?

题解:

设\(dp[i]\)表示以 \(i\) 结尾的,满足题目要求的\(1\) ~ \(i\)排列。

显然。

如果,\(i<=k+1\),则\(dp[i]=0\)。

因为我们考虑 \(i-1\) 在这个排列当中的位置。当 \(i-1\) 和 \(i\) 之间的数字超过 \(k\)个时,显然成立,此时共有 \((i-k-1)*(i-2)!\) 种序列。

否则,\(i-1\) 的下标\(j >= i-k\), 把排列的前 \(j\) 个数字离散化为都由\(1\) ~ \(j\) 组合之后,这些数字组成的排列一定是以 \(j\) 结尾,满足题目要求的排列,共有\(dp[j]\)个,因为后面的数字少于 \(k\)个,不可能满足题目要求。\(dp[j]\) 是离散化之后的结果,离散化之前的结果共有\(dp[j]*C(i-2,j-1)*(i-j-1)!=dp[j]*\frac{(i-2)!}{(j-1)!}\)个。可以理解为:先在剩下的 \(i-2\) 个数当中取 \(j-1\) 个排在下标为$ 1~j-1的$位置,下标 \(j\) 之后到最后一个元素之前的位置随意排列)。

所以,两种情况加起来就是:

\(dp[i]=(i-k-1)*(i-2)!+\sum_{j=i-k}^{i-1}dp[j]*\frac{(i-2)!}{(j-1)!}\)。

但是这样直接计算要 \(O(n^2)\)。

提取一下\((i-2)!\),变成:

\(dp[i]=(i-k-1)*(i-2)!+(i-2)!*\sum_{j=i-k}^{i-1}\frac{dp[j]}{(j-1)!}\)

\(= (i-2)!*[(i-k-1)+\sum_{j=i-k}^{i-1}\frac{dp[j]}{(j-1)!}]\)

后面一项 \(\frac{dp[j]}{(j-1)!}\) 就可以利用前缀和求出。阶乘的乘除可以利用逆元求出。直接算就是O(n)。

\(dp[n]\)是以 \(n\) 结尾的排列个数。我们把 \(n\) 排在不同的位置 \(h\),把\(n\)下标之前的数离散化到\(1\) ~ \(h-1\),跟上面的一样,所以最终答案为:

\(\sum_{h=1}^{n}dp[h]*\frac{(n-1)!}{(h-1)!}\)。

总复杂度:\(O(n)\)

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1000010;
ll inv[maxn],fac[maxn],dp[maxn],sum[maxn];
const int mod =1e9+7; ll qpower(ll a,ll b){
ll res = 1;
while(b)
{
if(b&1)res = res*a%mod;
b>>=1;
a= a*a%mod;
}
return res;
} int main(int argc, char const *argv[]) {
ll n,k;
ll ans = 0;
cin>>n>>k;
if(k+1>=n){
printf("0\n");
exit(0);
}
fac[0] = 1;
for (int i = 1; i <=n; i++) {
fac[i] = (fac[i-1] * i) %mod;
}
inv[n] = qpower(fac[n],mod-2);
for(int i=n-1;i>=0;i--){
inv[i] = inv[i+1] *(i+1);
inv[i] %= mod;
}
memset(dp,0,sizeof(dp));
memset(sum,0,sizeof(sum)); for(int i=k+2;i<=n;i++){
dp[i] = (i-k-1 + (sum[i-1] - sum[i-k-1] +mod)%mod)%mod;
dp[i] = (dp[i] * fac[i-2]) % mod;
sum[i] = sum[i-1] + (dp[i] * inv[i-1])%mod;
sum[i] %= mod;
ans += (((dp[i] * fac[n-1]) % mod) * inv[i-1])%mod;
ans %= mod;
}
cout<<ans<<endl;
return 0;
}

ADDITION:

当然也可以把不符合题目条件的先算出来,然后用 \(n!\)减去不符合条件的个数,即为答案。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1000005;
ll inv[maxn],fac[maxn],dp[maxn],sum[maxn];
const int mod =1e9+7; ll qpower(ll a,ll b){
ll res = 1;
while(b)
{
if(b&1)res = res*a%mod;
b>>=1;
a= a*a%mod;
}
return res;
}
int main(int argc, char const *argv[]) {
ll n,k;
cin>>n>>k;
if(k+1>=n)
{
printf("0\n");
exit(0);
}
fac[0] = 1;
for(int i=1;i<=n;i++){
fac[i] = fac[i-1]*i%mod;
}
inv[n] = qpower(fac[n],mod-2);
for(int i=n-1;i>=0;i--){
inv[i] = inv[i+1] * (i+1) %mod;
}
dp[1] = sum[1] = 1;
ll ans = fac[n-1];
for(int i=2;i<=n;i++){
dp[i] = (sum[i-1] - sum[max(0LL,i-k-1)]) *fac[i-2] %mod;
sum[i] = (sum[i-1] + dp[i] * inv[i-1]) % mod;
ans = (ans + dp[i] * fac[n-1] %mod * inv[i-1])%mod;
}
cout<<(fac[n]-ans+mod)%mod<<endl;
return 0;
}

Codeforces Round #445 Div. 1 C Maximum Element (dp + 组合数学)的更多相关文章

  1. Codeforces Round #174 (Div. 1) B. Cow Program(dp + 记忆化)

    题目链接:http://codeforces.com/contest/283/problem/B 思路: dp[now][flag]表示现在在位置now,flag表示是接下来要做的步骤,然后根据题意记 ...

  2. Codeforces Round #221 (Div. 1) B. Maximum Submatrix 2 dp排序

    B. Maximum Submatrix 2 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset ...

  3. Codeforces Round #276 (Div. 1) B. Maximum Value 筛倍数

    B. Maximum Value Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/484/prob ...

  4. Codeforces Round #508 (Div. 2) E. Maximum Matching(欧拉路径)

     E. Maximum Matching 题目链接:https://codeforces.com/contest/1038/problem/E 题意: 给出n个项链,每条项链左边和右边都有一种颜色(范 ...

  5. Codeforces Round #172 (Div. 2) D. Maximum Xor Secondary 单调栈应用

    http://codeforces.com/contest/281/problem/D 要求找出一个区间,使得区间内第一大的数和第二大的数异或值最大. 首先维护一个单调递减的栈,对于每个新元素a[i] ...

  6. Codeforces Round #276 (Div. 1)B. Maximum Value 筛法

    D. Maximum Value     You are given a sequence a consisting of n integers. Find the maximum possible ...

  7. Codeforces Round #599 (Div. 2) A. Maximum Square 水题

    A. Maximum Square Ujan decided to make a new wooden roof for the house. He has

  8. Codeforces Round #555 (Div. 3) F. Maximum Balanced Circle

    F. Maximum Balanced Circle 题目链接 题意 给出\(n\)个数,现在要从中选出最多的数\(b_i,b_{i+1},\cdots,b_k\),将这些数连成一个环,要求两两相邻的 ...

  9. Codeforces Round #568 (Div. 2) D. Extra Element

    链接: https://codeforces.com/contest/1185/problem/D 题意: A sequence a1,a2,-,ak is called an arithmetic ...

随机推荐

  1. Idea下mybatis的错误—Module not specified

    IDEA下使用maven的mybatis常见错误 错误类型一:导入项目引起的错误Module not specified 错误提示:idea Error Module not specified. 错 ...

  2. 【Uva 1625】Color Length

    [Link]: [Description] 给你两个序列,都由大写字母组成; 每次,把两个序列中的一个的开头字母加在字符串的尾端,然后在那个序列中删掉那个开头字母; 最后得到一个字符串; 这个字符串显 ...

  3. UVA 11642 Fire!

    Fire! Time Limit: 1000ms Memory Limit: 131072KB This problem will be judged on UVA. Original ID: 116 ...

  4. java架构解密——实时动态aop

    在上篇博客中个.咱们一起组建了一个容器,里面封装了业务,这样,咱们就将业务和服务的组装放到了client,而client就相当于咱们的开发中使用到的配置文件.大家发现问题了吗?就是我不能动态修改了?业 ...

  5. Can not find a java.io.InputStream with the name [downloadFile] in the invocation stack.

    1.错误描写叙述 八月 14, 2015 4:22:45 下午 com.opensymphony.xwork2.util.logging.jdk.JdkLogger error 严重: Excepti ...

  6. SSM(spring,springMVC,Mybatis)框架的整合

    这几天想做一个小项目,所以搭建了一个SSM框架. 1.基本概念 1.1.Spring   Spring是一个开源框架,Spring是于2003 年兴起的一个轻量级的Java 开发框架,由Rod Joh ...

  7. js闭包中注意文字总结

    //闭包注意的点 //闭包中使用外部变量不是复制而是引用 //闭包可以节省传递参数问题 //在循环中使用闭包

  8. spring boot 热启动

    spring boot热启动有两种方式 1. 以Maven插件的形式去加载,所以启动时使用通过Maven命令mvn spring-boot:run启动,而通过Application.run方式启动的会 ...

  9. AC自己主动机模板

    AC自己主动机模板-- /* * AC自己主动机模板 * 用法: * 1.init() : 初始化函数 * 2.insert(str) : 插入字符串函数 * 3.build() : 构建ac自己主动 ...

  10. mac下的词典翻译快捷键

    mac下的词典翻译快捷键:cmd+ctl+d;很方便