题目大意

给出一些数\(A_1,A_2,\cdots A_n\),求

\[\sum_{i=1}^{n}\sum_{j=1}^{n}\mathrm{lcm}(A_i,A_j)
\]

\(A_i,A_n\leq 50000\)

运用莫比乌斯反演思路

对于这种对多个数进行gcd、lcm统计的题,往往要用莫比乌斯反演。运用莫比乌斯反演的思路往往如下:

  1. 我们要求的\(g(x)\)是什么?
  2. 比较容易求的\(f(x)\)是什么?
  3. 如果我们要求的\(g(x)\)已知,则比较容易求的\(f(x)\)应当如何表达?
  4. 如果表达是以莫比乌斯反演公式的形式,则先求出\(f(x)\),然后反演出\(g(x)\)即可。

我们要求的\(g(x)\)是什么?

错误做法

根据我们的做题经验,\(g(x)\)表示最大公约数是\(x\)的数的对数,即

\[g(x)=\sum_{i=1}^n\sum_{j=1}^n [\gcd(A_i,A_j)=k]
\]

为什么可以利用它呢?因为

\[原式=\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{A_i A_j}{\gcd(A_i,A_j)}\tag{1}
\]

提取出\(A_i,A_j\)得

\[原式=(\sum_{i=1}^n A_i)^2\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{1}{\gcd(A_i,A_j)}
\]

OH,NO!这么化简是不对的。设\(f(x),g(x)\)为任意函数,则

\[\sum_{i=1}^{n}\sum_{j=1}^{n}f(i)g(j)=\sum_{i=1}^n f(i)\sum_{j=1}^n g(j)
\]

此式成立,因为函数\(f(i),g(j)\)的参数只关于一个变量。但是

\[\sum_{i=1}^n\sum_{j=1}^n f(i,j)g(i,j)\neq \sum_{i=1}^n\sum_{j=1}^n f(i,j)\sum_{i=1}^n\sum_{j=1}^n g(i,j)
\]

这就很荒谬了。函数\(f,g\)是同时关于\(i,j\)的函数。两个函数相乘时,里面的\((i,j)\)都应当是相等的,但化后的式子\(f,g\)内的\(i,j\)不相等时也乘起来了,这就错了。原式中,\(f(i,j)=A_i A_j\),\(g(i,j)=\frac{1}{\gcd(A_i,A_j)}\)。问题就出在这里。

正确做法

至少(1)式还是对的。因为\(\gcd(A_i,A_j)\)一定时,我们要求的是\(A_i A_j\)的和,所以

\[g(x)=\sum_{i=1}^n\sum_{j=1}^n A_i A_j[\gcd(A_i,A_j)=x]
\]

\(f(x)\)怎么求?

定义

\[f(x)=\sum_{i=1}^n\sum_{j=1}^n A_i A_j[\gcd(A_i,A_j)=kx]\tag{2}$$$$=\sum_{i=1}^n\sum_{j=1}^n A_i A_j[x|A_i,x|A_j]$$$$=\sum_{x|A_i}\sum_{x|A_j}A_i A_j$$$$=(\sum_{x|A_i}A_i)^2\tag{3}
\]

(2)式即能体现莫比乌斯函数的性质。

运用(3)求\(f(x)\)。

如何迅速地找到所有满足条件的\(A_i\)?

建立一个维护A个数的桶数组即可。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; #define ll long long const int MAX_N = 50010;
int Mu[MAX_N];
ll F[MAX_N], G[MAX_N], ExistCnt[MAX_N];
ll N, MaxA; void GetMu(int *mu, int n)
{
static int prime[MAX_N];
static bool NotPrime[MAX_N];
int primeCnt = 0;
Mu[1] = 1;
for (int i = 2; i <= n; i++)
{
if (!NotPrime[i])
{
prime[primeCnt++] = i;
Mu[i] = -1;
}
for (int j = 0; j <= primeCnt; j++)
{
if (i*prime[j] > n)
break;
NotPrime[i*prime[j]] = true;
if (i%prime[j] == 0)
{
mu[i*prime[j]] = 0;
break;
}
else
mu[i*prime[j]] = -mu[i];
}
}
} void GetF()
{
for (int cd = 1; cd <= MaxA; cd++)
{
ll sum = 0;
for (int k = 1; k <= MaxA / cd; k++)
sum += cd*k*ExistCnt[cd*k];
F[cd] = sum*sum;
}
} void GetG()
{
for (int gcd = 1; gcd <= MaxA; gcd++)
for (int k = 1; k <= MaxA / gcd; k++)
G[gcd] += F[gcd*k] * Mu[k];
} ll Solve()
{
ll ans = 0;
for (int gcd = 1; gcd <= MaxA; gcd++)
ans += G[gcd] / gcd;
return ans;
} int main()
{
ll a;
scanf("%lld", &N);
for (int i = 1; i <= N; i++)
{
scanf("%lld", &a);
ExistCnt[a]++;
MaxA = max(MaxA, a);
}
GetMu(Mu, MaxA);
GetF();
GetG();
cout << Solve() << endl;
return 0;
}

luogu3911 最小公倍数之和的更多相关文章

  1. luogu3911 最小公倍数之和(莫比乌斯反演)

    link 给定\(A_1,A_2,\dots,A_N\),求\(\sum_{i=1}^N\sum_{j=1}^Nlcm(A_i,A_j)\) \(1\le N\le 50000;1\le A_i\le ...

  2. 51NOD 1238 最小公倍数之和 V3 [杜教筛]

    1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...

  3. 51nod1363 最小公倍数之和

    题目描述 给出一个n,求1-n这n个数,同n的最小公倍数的和. 例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mo ...

  4. 51nod 1238 最小公倍数之和 V3

    51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...

  5. 51nod 1190 最小公倍数之和 V2

    给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b). 例如:a = 1, b = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30 ...

  6. 51nod 1363 最小公倍数之和 ——欧拉函数

    给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mod 1000 ...

  7. 51Nod 最大公约数之和V1,V2,V3;最小公倍数之和V1,V2,V3

    1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 输入 1个数N ...

  8. BNU 12846 LCM Extreme 最小公倍数之和(线性欧拉筛选+递推)

    LCM Extreme Time Limit: 3000ms Memory Limit: 131072KB   This problem will be judged on UVALive. Orig ...

  9. 51 NOD 1238 最小公倍数之和 V3

    原题链接 最近被51NOD的数论题各种刷……(NOI快到了我在干什么啊! 然后发现这题在网上找不到题解……那么既然A了就来骗一波访问量吧…… (然而并不怎么会用什么公式编辑器,写得丑也凑合着看吧…… ...

随机推荐

  1. var _this = this 是干什么的

    因为JS可以多层嵌套代码可能下面还可以再嵌一个方法引用this就会变成子方法控制的对象如果需要上级的对象在没有参数的情况下前面前提做了一个临时变量_this可以保存上级对象子方法中就可以用_this来 ...

  2. Css打造一个简单的静态七巧板

    偶然在微博上看到用css写一个七巧板,正好也有一些源代码,于是就试着敲了敲. 主要是利用了css3的transform,实现平移,旋转,变形,直接用看到的代码敲出来之后有些问题,因为宽度上下面绿色的三 ...

  3. SQL Server之存储过程

    存储过程的概念 存储过程Procedure是一组为了完成特定功能的SQL语句集合,经编译后存储在数据库中,用户通过指定存储过程的名称并给出参数来执行. 存储过程中可以包含逻辑控制语句和数据操纵语句,它 ...

  4. 读书笔记「Python编程:从入门到实践」_8.函数

    8.1 定义函数 def greet_user(): # def 来告诉Python你要定义一个函数.这是函数定义 """Hello World""& ...

  5. 【sqli-labs】 less32 GET- Bypass custom filter adding slashes to dangrous chars (GET型转义了'/"字符的宽字节注入)

    转义函数,针对以下字符,这样就无法闭合引号,导致无法注入 ' --> \' " --> \" \ --> \\ 但是,当MySQL的客户端字符集为gbk时,就可能 ...

  6. Git及Github环境搭建(Windows系统)

    一.github账号注册 1.打开网址https://github.com  注册账号: 二.本地安装Git 1.安装包下载地址:链接:https://pan.baidu.com/s/1smpnJL7 ...

  7. git_安装与配置

    安装 windows平台安装 在windows平台安装git,需要下载exe.文件,下载地址:https://gitforwindows.org/,双击下载的.exe文件,按照提示进行安装,安装完成后 ...

  8. java HttpURLConnection 登录网站 完整代码

    import java.io.*; import java.util.*; import java.net.*; public class WebTest { public static void m ...

  9. 那么再会吧!OI!(HNOI2019退役记)

    现在是4月7号7点. 退役了. 至此,整个LSOI17届全部毕业. 想说些什么呢?不知道啊. day1紧张过头,真正开始了解题意是在11点以后.半路忘了kmp怎么打,第一题计算几何根本没管,好啊,第三 ...

  10. string.Format 格式化日期格式

    DateTime dt = DateTime.Now;//2010年10月4日 17点05分            string str = "";            //st ...