【题目链接】:http://www.lydsy.com/JudgeOnline/problem.php?id=1021

【题意】

【题解】



设f[i][j][k]表示前i种面值的钱币;

第一个人当前的钱数为j,第二个人当前的钱数为k;

所需要的最小交换钱币次数;

这里第三个人的钱数就是sum-j-k;

然后我们以钱币的种类划分成6个阶段进行这样的DP;

(这里我们可以一开始通过a,b,c处理出最后第一个人该有多少钱、第二个人该有多少钱…)

DP的依据就是;

同一种类的钱币;

只要确定了某个人要增加或者减少多少个这种类型的钱币个数;

那么最佳的方案就确定了;

即不会出现从A转到B再转到C的情况。

对于这种,A可以直接转到C..

那么也就是说

这种类型的钱如果第一个人的改变量为da,第二个人的改变量为db;

那么最小的交换次数就能确定;

即(abs(da)+abs(db)+abd(da+db))/2

这是最佳的方案;

(同一种钱币)

根据这个规则

枚举第一个人的钱数、第二个人的钱数、这种钱币第一个人最后有多少张,第二个人有多少张.

进行一个类似背包的DP就好.



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%lld",&x)
#define ref(x) scanf("%lf",&x) typedef pair<int, int> pii;
typedef pair<LL, LL> pll; const int dx[9] = { 0,1,-1,0,0,-1,-1,1,1 };
const int dy[9] = { 0,0,0,-1,1,-1,1,-1,1 };
const int val[7] = { 0,1,5,10,20,50,100 };
const double pi = acos(-1.0);
const int N = 1e3+100;
const int INF = 0x3f3f3f3f; int total[4], cnt[4][7],tot[7],sum;
int f[2][N][N],a,b,c,target[3],pre,now; #define UPD(x,y) (x = min(x,y)) int main()
{
//freopen("F:\\rush.txt", "r", stdin);
rei(a), rei(b), rei(c);
rep1(i, 1, 3)
rep2(j, 6, 1)
{
rei(cnt[i][j]);
total[i] += val[j] * cnt[i][j];
tot[j] += cnt[i][j];
sum += val[j] * cnt[i][j];
}
target[1] = total[1] - a + c;
target[2] = total[2] - b + a;
if (target[1] < 0 || target[2] < 0 || sum - target[1] - target[2] < 0)
{
puts("impossible");
return 0;
} pre = now = 0;
memset(f[pre], INF, sizeof f[pre]);
f[pre][total[1]][total[2]] = 0;
rep1(i, 1, 6)
{
pre = now;
now = now ^ 1;
memset(f[now], INF, sizeof f[now]);
rep1(j, 0, sum)
{
int t = sum - j;
rep1(k, 0, t)
{
if (f[pre][j][k] == INF) continue;
UPD(f[now][j][k], f[pre][j][k]);
//assert f[pre][j][k]!=INF
rep1(q, 0, tot[i])
{
int r = tot[i] - q;
rep1(w, 0, r)
{
int da = q - cnt[1][i], db = w - cnt[2][i];
int cnta = j + da*val[i], cntb = k + db*val[i];
if (cnta < 0 || cntb < 0 || sum - cnta - cntb < 0) continue;
UPD(f[now][cnta][cntb], f[pre][j][k] + (abs(da) + abs(db) + abs(da + db)) / 2);
}
}
}
}
}
if (f[now][target[1]][target[2]] == INF) return puts("impossible"), 0;
printf("%d\n", f[now][target[1]][target[2]]);
//printf("\n%.2lf sec \n", (double)clock() / CLOCKS_PER_SEC);
return 0;
}

【BZOJ 1021】[SHOI2008]Debt 循环的债务的更多相关文章

  1. BZOJ 1021 [SHOI2008]Debt 循环的债务

    1021: [SHOI2008]Debt 循环的债务 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 694  Solved: 356[Submit][S ...

  2. BZOJ 1021: [SHOI2008]Debt 循环的债务( dp )

    dp(i, j, k)表示考虑了前i种钱币(从小到大), Alice的钱数为j, Bob的钱数为k, 最小次数. 脑补一下可以发现, 只有A->B.C, B->A.C, C->A.B ...

  3. 1021: [SHOI2008]Debt 循环的债务 - BZOJ

    Description Alice.Bob和Cynthia总是为他们之间混乱的债务而烦恼,终于有一天,他们决定坐下来一起解决这个问题.不过,鉴别钞票的真伪是一件很麻烦的事情,于是他们决定要在清还债务的 ...

  4. bzoj1021 [SHOI2008]Debt 循环的债务

    前天打了一场比赛,让我知道自己Dp有多弱了,伤心了一天,没刷bzoj. 昨天想了一天,虽然知道几何怎么搞,但我还是不敢写,让我知道自己几何有多弱了,伤心了一天,没刷bzoj 1021: [SHOI20 ...

  5. bzoj千题计划111:bzoj1021: [SHOI2008]Debt 循环的债务

    http://www.lydsy.com/JudgeOnline/problem.php?id=1021 如果A收到了B的1张10元,那么A绝对不会把这张10元再给C 因为这样不如B直接给C优 由此可 ...

  6. [bzoj1021][SHOI2008]Debt 循环的债务 (动态规划)

    Description Alice. Bob和Cynthia总是为他们之间混乱的债务而烦恼,终于有一天,他们决定坐下来一起解决这个问题.不过,鉴别钞票的真伪是一件很麻烦的事情,于是他 们决定要在清还债 ...

  7. BZOJ_1021_[SHOI2008]_Debt循环的债务_(DP)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1021 三个人相互欠钱,给出他们每个人各种面额的钞票各有多少张,求最少需要传递多少张钞票才能把账 ...

  8. BZOJ.1021.[SHOI2008]循环的债务(DP)

    题目链接 不同面额的钞票是可以分开考虑的. ↑其实并不很明白具体(证明?),反正是可以像背包一样去做. f[x][i][j]表示用前x种面额钞票满足 A有i元 B有j元 (C有sum-i-j)所需交换 ...

  9. [SHOI 2008]Debt 循环的债务

    Description 题库链接 A 欠 B \(x_1\) 元, B 欠 C \(x_2\) 元, C 欠 A \(x_3\) 元.现每人手上各有若干张 100,50,20,10,5,1 钞票.问至 ...

随机推荐

  1. 【Codeforces Round #446 (Div. 2) C】Pride

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 想一下,感觉最后的结果肯定是从某一段开始,这一段的gcd为1,然后向左和向右扩散的. 则枚举那一段在哪个地方. 我们设这一段中所有的 ...

  2. Android SimpleAdapter

    1.MainActivity.java public class MainActivity extends Activity { private ListView listView; private ...

  3. 【软件project】 文档 - 银行业务管理 - 需求分析

    ---------------------------------------------------------------------------------------------------- ...

  4. 素数表(Eratosthenes)

    怎么判断一个数是素数? 常规的方法是枚举从2开始的数,看看是否能被整除. 但是,如果要判断的数很多的时候,那么效率会十分低下.... 一个优化的方法是不用判断比这个数小的所有数(到平方根位置),而是判 ...

  5. Transact-SQL语法速查手册

    第1章 Transact-SQL基础 1.1 标识符 一.常规标识符 1. 命名规则: l 第一个字母必须是Unicode2.0标准定义的字母.下划线.at符号(@)和数字符号(#): l 后续字符可 ...

  6. Leetcode 第 2 题(Add Two Numbers)

    Leetcode 第 2 题(Add Two Numbers) 题目例如以下: Question You are given two linked lists representing two non ...

  7. 4、基于JZ2440之编写测试代码处理(处理图片识别人脸)

    1.代码如下: void detectAndDisplay(Mat image) { CascadeClassifier ccf; //创建脸部对象 //ccf.load(xmlPath); //导入 ...

  8. 【例题 6-3 UVA - 442】Matrix Chain Multiplication

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 用栈来处理一下表达式就好. 因为括号是一定匹配的.所以简单很多. ab x bc会做abc次乘法. [代码] #include< ...

  9. 【BZOJ 3172】单词

    [链接]h在这里写链接 [题意]     给你n个单词;     这n个单词组成了一篇文章;     问你每个单词在这篇文章中出现了多少次.     其中每个单词之间用一个逗号隔开->组成一篇文 ...

  10. [Node] Run Local DevDependencies from the Command Line with npx

    In the past, you've needed to either write a package.json script or use the node_modules/.bin direct ...