传送门

题目大意:

一张无向图上有一只猫和一只老鼠,猫先走,鼠后走。猫每次会向与其相邻的并且距离老鼠最近的点移动(若距离相等去编号较小的),如果移动一步后还没吃到老鼠,还可以再移动一步(算在一个时间内的)。老鼠每次会向相邻的点移动或者不移动,所有选择的概率相同。问猫期望多少时间能够吃到老鼠。

题目分析:

期望dp:设\(f[i][j]\)表示猫在i点,鼠在j点,猫吃到鼠的期望步数。\(P[i][j]\)表示与i相邻的点中距离j最近且编号最小的点(bfs预处理)。\(deg[i]\)表示i的度数。

那么:$$f[i][j] = f[P[P[i][j]][j] / (deg[v] + 1) + \sum{f[P[P[i][j]][v_j] / (deg[v] + 1)} + 1$$

方程上面两式分别对应:

  1. 猫移动,鼠不移动。
  2. 猫移动,鼠移动。

    初始化:$$f[i][i] = 0$$

\[f[i][j] = 1(dis[i][j] \le 2)
\]

code

#include<bits/stdc++.h>
using namespace std;
const int N = 1050, M = 1050,OO = 0x3f3f3f3f;
#define eps 1e-8
int n, m, p, q, vt;
int ecnt, adj[N], nxt[M << 1], go[M << 1], P[N][N], dist[N][N], deg[N];
double f[N][N];
int vst[N];
struct node{
int now, dis;
node(){}
node(int _now, int _dis):now(_now), dis(_dis){}
}; inline void addEdge(int u, int v){
nxt[++ecnt] = adj[u], adj[u] = ecnt, go[ecnt] = v;
deg[u]++;
} inline void Bfs(int i){
static queue<node> que;
while(!que.empty()) que.pop();
vt++;
que.push(node(i, 0));
vst[i] = vt;
while(!que.empty()){
node u = que.front(); que.pop();
for(int e = adj[u.now]; e; e = nxt[e]){
int v = go[e];
if(vst[v] == vt) continue;
dist[i][v] = u.dis + 1;
vst[v] = vt;
node ret = node(v, u.dis + 1);
que.push(ret);
}
}
} inline void init(){
memset(dist, OO, sizeof dist);
for(int i = 1; i <= n; i++) dist[i][i] = 0, Bfs(i);
for(int i = 1; i <= n; i++){
P[i][i] = i;
for(int j = i + 1; j <= n; j++){
/*与i相邻的与j最近的点*/
int mndis = OO, point = 0;
for(int e = adj[i]; e; e = nxt[e]){
int v = go[e];
if(dist[v][j] < mndis){
mndis = dist[v][j];
point = v;
}
else if(dist[v][j] == mndis && v < point) point = v;
}
P[i][j] = point;
/*与j相邻的与i最近的点*/
mndis = OO, point = 0;
for(int e = adj[j]; e; e = nxt[e]){
int v = go[e];
if(dist[v][i] < mndis){
mndis = dist[v][i];
point = v;
}
else if(dist[v][i] == mndis && v < point) point = v;
}
P[j][i] = point;
}
}
} inline double F(int u, int v){
if(f[u][v] >= 0) return f[u][v];
f[u][v] = 1.0;
int to = P[P[u][v]][v];
double p = 1.0 / (1.0*deg[v] + 1.0);
f[u][v] += F(to, v) * p;
for(int e = adj[v]; e; e = nxt[e]){
int vj = go[e];
f[u][v] += F(to, vj) * p;
}
return f[u][v];
} int main(){
freopen("h.in", "r", stdin);
scanf("%d%d%d%d", &n, &m, &p, &q);
for(int i = 1; i <= m; i++){
int x, y;
scanf("%d%d", &x, &y);
addEdge(x, y), addEdge(y, x);
}
init();
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
f[i][j] = -5555;
for(int i = 1; i <= n; i++){
f[i][i] = 0;
for(int j = i + 1; j <= n; j++){
if(dist[i][j] <= 2) f[i][j] = f[j][i] = 1.0;
}
}
printf("%.3lf\n", F(p, q));
}

BZOJ1415 聪聪与可可 - 期望dp的更多相关文章

  1. 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索

    [题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...

  2. BZOJ 1415 聪聪和可可(期望DP)

    我们可以用n次BFS预处理出 to[][]数组,to[i][j]表示聪聪从i点到j点第一步会走哪个点. 那么对于聪聪在i点,可可在j点,聪聪先走,定义dp[i][j]表示步数期望. 那么显然有dp[i ...

  3. 洛谷4206/NOI2005T4 聪聪和可可 期望DP+记忆化搜索

    题意:给出n个点m条边的无向图,两个主角聪聪和可可开始分别在S点和T点.聪聪想吃掉可可,每次由匆匆先行动后来可可行动.聪聪的行动是选他到可可的最短路上的点走最多两步(如果最短路有几条就选编号最小的走) ...

  4. bzoj 1415: [Noi2005]聪聪和可可 期望dp+记忆化搜索

    期望dp水题~ 你发现每一次肯定是贪心走 2 步,(只走一步的话就可能出现环) 然后令 $f[i][j]$ 表示聪在 $i$,可在 $j$,且聪先手两个人碰上面的期望最小次数. 用记忆化搜索转移就行了 ...

  5. luogu P4206 [NOI2005]聪聪与可可 期望dp 记忆化搜索

    LINK:聪聪与可可 这道题的核心是 想到如何统计答案. 如果设f[i][j]表示第i个时刻... 可以发现还需要统计位置信息 以及上一次到底被抓到没有的东西 不太好做. 两者的位置都在变化 所以需要 ...

  6. [NOI2005]聪聪与可可(期望dp)

    题意:给一张无向图,有一只猫和一只老鼠,猫每秒会向老鼠的方向移动两个单位,若它们的距离为一,那么只会移动一个单位,老鼠会等概率向周围移动一步或不动,求猫抓到老鼠的期望时间. Solutionluogu ...

  7. BZOJ1415 [Noi2005]聪聪和可可 【SPFA + 期望dp记忆化搜索】

    题目 输入格式 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...

  8. bzoj1415 [Noi2005]聪聪和可可【概率dp 数学期望】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1415 noip2016 D1T3,多么痛的领悟...看来要恶补一下与期望相关的东西了. 这是 ...

  9. 概率/期望DP初步——BZOJ1415 聪聪和可可

    期望相关: 数学期望,可以简单理解的加权平均数.设有一系列的值$x_i$,每个值被取到的概率为$p_i$,则期望$E=\sum\limits_{i=1}^n p_i x_i$. 期望具有线性性:$$E ...

随机推荐

  1. 11.typeid

    #include <iostream> using namespace std; void main() { int a; cout << typeid(a).name() & ...

  2. Python数据结构同Json类型数据相互转换的用法

    在做Python接口自动化的时候,经常要用到Python数据结构同Json类型数据相互转换来供我们做进一步的验证提供数据,在此做个记录和总结 Python数据结构同Json类型数据相互转换的函数有:j ...

  3. php-wamp环境搭建

    wamp(Windows,Apache,Mysql,PHP) win8.1下搭建apache2.4(64位)  php5.6.11(64位)  mysql5.6.24(32位) d盘创建文件结构为: ...

  4. Project Euler 363 Bézier Curves(几何+二分)

    题目链接: https://projecteuler.net/problem=363 题目: A cubic Bézier curve is defined by four points: \(P_0 ...

  5. 最新GitHub新手使用教程(Linux/Ubuntu Git从安装到使用)——详细图解

    说明:该篇博客是博主一字一码编写的,实属不易,请尊重原创,谢谢大家! 一.叙述 1.说明:需要在Windows 安装Git的同学,可以查看该篇博客 https://blog.csdn.net/qq_4 ...

  6. MySQL參数binlog-do-db对binlogs写入的影响

    1. 环境描写叙述 目的:当数据库中设置了binlog-do-db时.在不同的binlog_format=statement | row | mixed 下对binlog的写入影响,这个在主从复制中会 ...

  7. 《你不知道的JavaScript(上)》笔记——let和const

    笔记摘自:<你不知道的JavaScript(上)>第3章 函数作用域和块作用域 let 1.let 关键字可以将变量绑定到所在的任意作用域中 2.let 为其声明的变量隐式地劫持了所在的块 ...

  8. SourceInsight打开的工程中中文字体显示乱码的问题

    1.在ubuntu下进入文件所在目录执行指令“file *”来查看文件的编码方式,sourceinsight有些版本只支持GB2312和ascil码,所以需要编码转换: 2.在ubuntu下可以通过i ...

  9. u-boot分析1:Nandflash、Norflash启动

    了解u-boot之前首先了解下Bootloader,简单说Bootloader就是一段小程序,它在系统上电时开始运行,初始化硬件设备,准备好软件环境,最后调用操作系统内核. u-boot全称:Univ ...

  10. js读取json,纠结。。。

    什么是json.先小抄一段:  JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.採用全然独立于语言的文本格式, 是理想的数据交换格式,同一时候,JSO ...