'''

思路:
1、调用数据集 2、定义用来实现神经元功能的函数(包括解决过拟合) 3、定义输入和输出的数据
4、定义隐藏层(函数)和输出层(函数) 5、分析误差和优化数据(改变权重)
6、执行神经网络

'''
import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer

#调用数据
digits = load_digits()#下载数据
X = digits.data #样本特征
Y = digits.target #样本准确值
y = LabelBinarizer().fit_transform(Y) #将数据转化为二值数组

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3)#分配数据
'''

扩展知识点
train_test_split是交叉验证中常用的函数,功能是从样本中随机的按比例选取train data和test data,形式为: 
X_train,X_test, y_train, y_test = cross_validation.train_test_split(train_data,train_target,test_size=0.4, random_state=0)
参数代表含义: 
train_data:所要划分的样本特征集 
train_target:所要划分的样本结果 
test_size:样本占比,如果是整数的话就是样本的数量 
random_state:是随机数的种子。
'''
print(len(X_train))

#定义用来实现神经元功能的函数
def add_layer(inputs,in_size,out_size,keep_prob,layer_name,activation_function=None):
  Weights = tf.Variable(tf.random_normal([in_size,out_size]))
  biases = tf.Variable(tf.zeros([1,out_size])+0.1)
  Wx_plus_Bx = tf.matmul(inputs,Weights)+biases
#在这里处理过拟合
  Wx_plus_b = tf.nn.dropout(Wx_plus_Bx,keep_prob)
  if activation_function==None:
    outputs = Wx_plus_b
  else:
    outputs = activation_function(Wx_plus_b)

  tf.summary.histogram(layer_name+'/outputs',outputs)
  return outputs

#定义输入和输出的数据

x_data = tf.placeholder(tf.float32,[None,64])#这是因为sklearn中的手写图片的像素和、为8*8
y_data = tf.placeholder(tf.float32,[None,10])#数字只有10个
keep_prob = tf.placeholder(tf.float32)#定义过拟合数

#定义隐藏层和输出层
layer = add_layer(x_data,64,50,keep_prob,'l1',tf.nn.tanh)#隐藏层
prediction = add_layer(layer,50,10,keep_prob,'l2',tf.nn.softmax)#输出层

#分析误差和优化数据
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_data*tf.log(prediction),reduction_indices=[1]))

scalar_loss = tf.summary.scalar('loss',cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.6).minimize(cross_entropy)

#初始化所有的变量
init = tf.global_variables_initializer()

merged = tf.summary.merge_all()#定义一个图框

'''
因为sess是在sess的时候才出现的,所以应该写在sess的面
train_writer = tf.summary.FileWriter('logs/train',sess.graph)
test_writer = tf.summary.FileWriter('logs/test',sess.graph)
'''

#执行
with tf.Session()as sess:
  sess.run(init)
  #写入网页,这当中只有histogram和scaler同时出现才能写入网页
  train_writer = tf.summary.FileWriter('Logs/train',sess.graph)
  test_writer = tf.summary.FileWriter('Logs/test',sess.graph)
  for i in range(1000):
    sess.run(train_step,feed_dict = {x_data:X_train,y_data:y_train,keep_prob:0.6})
    if i%50==0:
      train_result = sess.run(merged,feed_dict={x_data:X_train,y_data:y_train,keep_prob:1})
'''
这个merged会自动的将预测值的精确度求出来
'''
      test_result = sess.run(merged,feed_dict={x_data:X_test,y_data:y_test,keep_prob:1})
      train_writer.add_summary(train_result,i)#将数据划入图中
      test_writer.add_summary(test_result,i)#将数据划入图中

'''
这里出现一个错误:就是test_result = sess.run(scalar_loss,feed_dict={x_data:X_test,y_data:y_test,keep_prob:1})
train_result = sess.run(scalar_loss,feed_dict={x_data:X_train,y_data:y_train,keep_prob:1})中的scalar_loss
改为merged的时候,再次执行就会报错
解决办法
1、我们可以关机,然后把logs文件里面的东西删除,然后在执行一次。因为他是系统日志文件
2、由于我,这里只是想损失函数loss通过tensorboard显示出来而已,并且字典表也正常赋值了:
result = sess.run(merged,feed_dict={xs:x_data,ys:y_data})
一切都很正常,想来想去感觉这个函数应该可以采用其他方式替换:
merged = tf.summary.merge_all()
这是tensorflow提供的合并所有summary信息的api,但是我只是想合并损失函数loss的summary
'''

tensorflow学习之路---解决过拟合的更多相关文章

  1. tensorflow学习之路-----MNIST数据

    ''' 神经网络的过程:1.准备相应的数据库 2.定义输入成 3.定义输出层 4.定义隐藏层 5.训练(根据误差进行训练) 6.对结果进行精确度评估 ''' import tensorflow as ...

  2. TensorFlow学习之路1-TensorFlow介绍

    TensorFlow是一个采用数据流图(data flow graphs),用于数据计算的开源软件库. 什么是数据流图? TensorFlow的数据流图是由“节点”(nodes)和“线”(edges) ...

  3. tensorflow学习之路-----卷积神经网络个人总结

    卷积神经网络大总结(个人理解) 神经网络 1.概念:从功能他们模仿真实数据 2.结构:输入层.隐藏层.输出层.其中隐藏层要有的参数:权重.偏置.激励函数.过拟合 3.功能:能通过模仿,从而学到事件 其 ...

  4. tensorflow学习之路----保存和提取数据

    #保存数据注意他只能保存变量,不能保存神经网络的框架.#保存数据的作用:保存权重有利于下一次的训练,或者可以用这个数据进行识别#np.arange():arange函数用于创建等差数组,使用频率非常高 ...

  5. tensorflow学习之路-----简单卷积神经网路

    import tensorflow as tf#取数据,目的是辨别数字from tensorflow.examples.tutorials.mnist import input_data'''手动添加 ...

  6. tensorflow学习之路---Session、Variable(变量)和placeholder

    ---恢复内容开始--- 1.Session '''Session.run():首先里面的参数是一个API(函数的接口)的返回值或者是指定参数的值:功能:得知运算结果有两种访问方式:直接建立或者运用w ...

  7. tensorflow学习之路---简单的代码

    import numpyimport tensorflow as tf #自己创建的数据x_data = numpy.random.rand(100).astype(numpy.float32)#创建 ...

  8. TensorFlow学习路径【转】

    作者:黄璞链接:https://www.zhihu.com/question/41667903/answer/109611087来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...

  9. TensorFlow学习线路

    如何高效的学习 TensorFlow 代码? 或者如何掌握TensorFlow,应用到任何领域? 作者:黄璞链接:https://www.zhihu.com/question/41667903/ans ...

随机推荐

  1. Raw-OS源代码分析之任务删除与总结

    分析的内核版本号截止到2014-04-15,基于1.05正式版,blogs会及时跟进最新版本号的内核开发进度,若源代码凝视出现"???"字样,则是未深究理解部分. Raw-OS官方 ...

  2. Maven搭建之后的设置

    Maven搭建之后的设置 1,设置环境变量M2_HOME=D:\Java\apache-maven-3.3.9, MAVEN_OPTS=-Xms128m -Xmx512m 在path中,添加D:\Ja ...

  3. Java之旅(二)--- ServletContext

     什么是ServletContext?  WEB容器在启动时,它会为每一个WEB应用程序都创建一个相应的ServletContext对象.它代表当前web应用.通过使用这个对象,servlet能够 ...

  4. 删除heroku上的数据库记录

    部署本地项目到heroku上.在线上插入数据到数据库,本地代码再次更新到heroku,线上的数据记录还存在单是图片丢失.问题还没有解决: 本地代码和heroku代码怎样同步? heroku使用的pg和 ...

  5. SPFA的两种优化

    SPFA是可以优化的,这个大家都是晓得的吧. 下面介绍两种SPFA的神奇优化(我只代码实现了的一种) SLF:Small Label First策略,设要加入的节点是j,队首元素为i,若dist(j) ...

  6. Python TurtleWorld configuration and simple test

    TurtleWorld provides a set of functions for drawing lines by steering turtles around the screen. You ...

  7. 【转载】eclipse中批量修改Java类文件中引入的package包路径

    原博客地址:http://my.oschina.net/leeoo/blog/37852 当复制其他工程中的包到新工程的目录中时,由于包路径不同,出现红叉,下面的类要一个一个修改包路径,类文件太多的话 ...

  8. jquery easyui ajax data属性传值方式

    $.ajax({   url:url,   type:'post',   data:data,   dataType:'json',   contentType: "application/ ...

  9. ubuntu重启网络报错

    执行:gw@ubuntu:/$ /etc/init.d/networking restart 报错:stop: Rejected send message, 1 matched rules; type ...

  10. webpack(构建一个前端项目)详解--升级

    升级一个正式的项目结构 分离webpack.config.js文件: 新建一个webpack.config.base.js任何环境依赖的wbpack //public webpack const pa ...