http://poj.org/problem?id=2031

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 

The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is
quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible. 



All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or
(3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively. 



You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least
three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with
the shortest total length of the corridors. 



You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form
a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect. 

Input

The input consists of multiple data sets. Each data set is given in the following format. 





x1 y1 z1 r1 

x2 y2 z2 r2 

... 

xn yn zn rn 



The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100. 



The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after
the decimal point. Values are separated by a space character. 



Each of x, y, z and r is positive and is less than 100.0. 



The end of the input is indicated by a line containing a zero. 

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001. 



Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000. 

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834

/*

题目大意:太空建站,有n个点x,y,z,各有一个半径。有可能会有一个空间站吧还有一个覆盖,距离就是0。然后就是求最小生成树的总和

*/

#include <stdio.h>
#include <math.h>
#include <string.h>
#define INF 0x3f3f3f3f
#define N 110
int n;
double x[N];
double y[N];
double z[N];
double r[N];
double map[N][N];//两点的距离
double low[N];//最短距离
bool vis[N]; double fun(int i,int j)
{
double temp=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])+(z[i]-z[j])*(z[i]-z[j]))-(r[i]+r[j]);
if(temp<0) return 0;
return temp;
}
void prim()
{
int pos=1;
int i,j;
double sum=0;
memset(vis,0,sizeof(vis));
for(i=1;i<=n;++i)
low[i]=INF; for(i=1;i<=n;++i)//第一次给low赋值
{
low[i]=map[1][i];
}
vis[1]=1;//已经找到一个
low[1]=0;
for(i=1;i<n;++i)//再找n-1个点
{
double min=INF;
for(j=1;j<=n;++j)
{
if(!vis[j]&&min>low[j])
{
min=low[j];
pos=j;
}
}
if(min==INF)
{
printf("0.000\n");
return ;
}
vis[pos]=1;
sum+=min;
for(j=1;j<=n;++j)//low的更新
{
if(!vis[j]&&low[j]>map[pos][j])
low[j]=map[pos][j];
}
}
printf("%.3f\n",sum);
}
int main()
{
int i,j;
while(~scanf("%d",&n),n)
{
for(i=1;i<=n;++i)
{
scanf("%lf%lf%lf%lf",x+i,y+i,z+i,r+i);
}
for(i=1;i<=n;++i)
{
for(j=1;j<=i;++j)
{
map[i][j]=map[j][i]=fun(i,j);
}
}
prim();
} return 0;
}

Building a Space Station POJ 2031 【最小生成树 prim】的更多相关文章

  1. Building a Space Station POJ - 2031

    Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...

  2. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  3. Building a Space Station POJ - 2031 三维最小生成树,其实就是板子题

    #include<iostream> #include<cmath> #include<algorithm> #include<cstdio> usin ...

  4. C - Building a Space Station - poj 2031

    空间站是有一些球状的房间组成的,现在有一些房间但是没有相互连接,你需要设计一些走廊使他们都相通,当然,有些房间可能会有重合(很神奇的样子,重合距离是0),你需要设计出来最短的走廊使所有的点都连接. 分 ...

  5. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  6. POJ - 2031 Building a Space Station(计算几何+最小生成树)

    http://poj.org/problem?id=2031 题意 给出三维坐标系下的n个球体,求把它们联通的最小代价. 分析 最小生成树加上一点计算几何.建图,若两球体原本有接触,则边权为0:否则边 ...

  7. POJ 2031:Building a Space Station 最小生成树

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6083   Accepte ...

  8. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  9. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

随机推荐

  1. nginx 过滤zip 类型的文件

    http://www.cnblogs.com/bass6/p/5500660.html

  2. df与du查看磁盘空间使用不一致的解决方法

    近一段时间,某台服务器的磁盘空间使用不太正常,与其他的服务器相比,严重超出磁盘空间使用 使用df与du相关命令查看,具体结果如下: du -hFilesystem       Size  Used A ...

  3. SpringBoot下支付宝接口的使用

    SpringBoot下支付宝接口的使用 前期准备: 参考之前写过的 支付宝接口引入servlet版本 Jar包引入: <!-- 支付宝 --> <dependency> < ...

  4. dbgview

    这两天在看一个问题,matlab打不开摄像头,总是报错. 尝试抓包,打印,分析代码,一直没有找出问题,后来用dbgview打印出来调试信息,找到了问题点. 不得不说,这个工具真不错,以前从来不知道. ...

  5. springboot项目封装为docker镜像

    1.本次镜像的基础镜像是:https://www.cnblogs.com/JoeyWong/p/9173265.html 2.将打包好的项目文件放在与Dockerfile同级的目录下 3.Docker ...

  6. java源码之TreeSet

    1,TreeSet介绍 1)TreeSet 是一个有序的集合,它的作用是提供有序的Set集合.2)TreeSet 继承于AbstractSet,所以它是一个Set集合,具有Set的属性和方法.3)Tr ...

  7. java io包File类

    1.java io包File类, Java.io.File(File用于管理文件或目录: 所属套件:java.io)1)File对象,你只需在代码层次创建File对象,而不必关心计算机上真正是否存在对 ...

  8. Google翻译PDF文档

    Google翻译PDF文档 翻译软件虽多如牛毛,但有关整段/全文翻译,堪用的软件极少, 涉及专业技术的文献.胜任翻译工作的人力稀缺.少不了project师讴心沥血. 由于多是PDF格式.即使要翻译个概 ...

  9. angular4(1)angular脚手架

    angular2之后有了类似于vue-cli的脚手架工具,很方便的帮助我们搭建项目: 1.安装angular命令行工具:npm install @angular/cli -g 2.检测angular- ...

  10. sicily 1137 河床 (二分分治)

    <计算机算法设计与分析>啃书中... 有点看不进书,就来刷个水题吧,刚开始看错题了还. 注意:是所有测量点相差均不大于di而不是相邻两点... //1137.河床 #include < ...