http://poj.org/problem?id=2031

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 

The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is
quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible. 



All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or
(3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively. 



You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least
three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with
the shortest total length of the corridors. 



You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form
a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect. 

Input

The input consists of multiple data sets. Each data set is given in the following format. 





x1 y1 z1 r1 

x2 y2 z2 r2 

... 

xn yn zn rn 



The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100. 



The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after
the decimal point. Values are separated by a space character. 



Each of x, y, z and r is positive and is less than 100.0. 



The end of the input is indicated by a line containing a zero. 

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001. 



Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000. 

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834

/*

题目大意:太空建站,有n个点x,y,z,各有一个半径。有可能会有一个空间站吧还有一个覆盖,距离就是0。然后就是求最小生成树的总和

*/

#include <stdio.h>
#include <math.h>
#include <string.h>
#define INF 0x3f3f3f3f
#define N 110
int n;
double x[N];
double y[N];
double z[N];
double r[N];
double map[N][N];//两点的距离
double low[N];//最短距离
bool vis[N]; double fun(int i,int j)
{
double temp=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])+(z[i]-z[j])*(z[i]-z[j]))-(r[i]+r[j]);
if(temp<0) return 0;
return temp;
}
void prim()
{
int pos=1;
int i,j;
double sum=0;
memset(vis,0,sizeof(vis));
for(i=1;i<=n;++i)
low[i]=INF; for(i=1;i<=n;++i)//第一次给low赋值
{
low[i]=map[1][i];
}
vis[1]=1;//已经找到一个
low[1]=0;
for(i=1;i<n;++i)//再找n-1个点
{
double min=INF;
for(j=1;j<=n;++j)
{
if(!vis[j]&&min>low[j])
{
min=low[j];
pos=j;
}
}
if(min==INF)
{
printf("0.000\n");
return ;
}
vis[pos]=1;
sum+=min;
for(j=1;j<=n;++j)//low的更新
{
if(!vis[j]&&low[j]>map[pos][j])
low[j]=map[pos][j];
}
}
printf("%.3f\n",sum);
}
int main()
{
int i,j;
while(~scanf("%d",&n),n)
{
for(i=1;i<=n;++i)
{
scanf("%lf%lf%lf%lf",x+i,y+i,z+i,r+i);
}
for(i=1;i<=n;++i)
{
for(j=1;j<=i;++j)
{
map[i][j]=map[j][i]=fun(i,j);
}
}
prim();
} return 0;
}

Building a Space Station POJ 2031 【最小生成树 prim】的更多相关文章

  1. Building a Space Station POJ - 2031

    Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...

  2. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  3. Building a Space Station POJ - 2031 三维最小生成树,其实就是板子题

    #include<iostream> #include<cmath> #include<algorithm> #include<cstdio> usin ...

  4. C - Building a Space Station - poj 2031

    空间站是有一些球状的房间组成的,现在有一些房间但是没有相互连接,你需要设计一些走廊使他们都相通,当然,有些房间可能会有重合(很神奇的样子,重合距离是0),你需要设计出来最短的走廊使所有的点都连接. 分 ...

  5. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  6. POJ - 2031 Building a Space Station(计算几何+最小生成树)

    http://poj.org/problem?id=2031 题意 给出三维坐标系下的n个球体,求把它们联通的最小代价. 分析 最小生成树加上一点计算几何.建图,若两球体原本有接触,则边权为0:否则边 ...

  7. POJ 2031:Building a Space Station 最小生成树

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6083   Accepte ...

  8. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  9. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

随机推荐

  1. BZOJ 1717 [USACO06DEC] Milk Patterns (后缀数组+二分)

    题目大意:求可重叠的相同子串数量至少是K的子串最长长度 洛谷传送门 依然是后缀数组+二分,先用后缀数组处理出height 每次二分出一个长度x,然后去验证,在排序的后缀串集合里,有没有连续数量多于K个 ...

  2. [luogu4259 SCOI2003] 严格N元树 (高精 计数dp)

    题目描述 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d(根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严格2元树有三个, ...

  3. 集成swagger2构建Restful API

    集成swagger2构建Restful API 在pom.xml中进行版本管理 <swagger.version>2.8.0</swagger.version> 给taosir ...

  4. js实现鼠标吸附线条效果

    如图,箭头→为鼠标位置,鼠标会带有吸附着一些线条的效果,具体效果可在我的博客查看,当然,这也是可很受欢迎很常见的效果了=3= <script> !function(){ function ...

  5. https的基本原理,看完你的程序员女朋友再也不和你提分手了

    [http风险] 首先,我们来讲一下平时上网的时候,存在的风险. 初步接触过网络的同学都知道,网络上是很不安全的,尤其是各种公共场合的免费WIFI,以及手机上各种免费上网的万能钥匙.这些不安全因素会导 ...

  6. tring.Format格式化用法

    (数字保留两位小数,且每隔3为用逗号隔开): string.format("1f,.2d",333) -->333.00 string.format("1f,.2d ...

  7. 练几道,继续过Hard题目

    http://www.cnblogs.com/charlesblc/p/6384132.html 继续过Hard模式的题目吧.   # Title Editorial Acceptance Diffi ...

  8. JDBC-Statement 对象

    Statement 对象 一旦我们获得了数据库的连接,我们就可以和数据库进行交互.JDBC 的 Statement,CallableStatement 和 PreparedStatement 接口定义 ...

  9. Mongodb简单介绍

    1. 简单介绍 Mongodb是一种强大.灵活,可扩展的数据存储方式.属于nosql.非关系型数据库的一种. mongodb是面向文档的数据库. 尽管是非关系型数据库.可是它保留了很多关系型数据库的特 ...

  10. nyoj 585 取石子(六) 【Nim】

    取石子(六) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描写叙述 近期TopCoder的PIAOYI和HRDV非常无聊,于是就想了一个游戏,游戏是这种:有n堆石子,两个人 ...