机器学习经典算法之KNN
/*请尊重作者劳动成果,转载请标明原文链接:*/
/* https://www.cnblogs.com/jpcflyer/p/11111817.html * /






from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import KNeighborsRegressor
# 加载数据
digits = load_digits()
data = digits.data
# 数据探索
print(data.shape)
# 查看第一幅图像
print(digits.images[0])
# 第一幅图像代表的数字含义
print(digits.target[0])
# 将第一幅图像显示出来
plt.gray()
plt.imshow(digits.images[0])
plt.show()
(1797, 64)
[[ 0. 0. 5. 13. 9. 1. 0. 0.]
[ 0. 0. 13. 15. 10. 15. 5. 0.]
[ 0. 3. 15. 2. 0. 11. 8. 0.]
[ 0. 4. 12. 0. 0. 8. 8. 0.]
[ 0. 5. 8. 0. 0. 9. 8. 0.]
[ 0. 4. 11. 0. 1. 12. 7. 0.]
[ 0. 2. 14. 5. 10. 12. 0. 0.]
[ 0. 0. 6. 13. 10. 0. 0. 0.]]
0

# 分割数据,将 25% 的数据作为测试集,其余作为训练集(你也可以指定其他比例的数据作为训练集)
train_x, test_x, train_y, test_y = train_test_split(data, digits.target, test_size=0.25, random_state=33)
# 采用 Z-Score 规范化
ss = preprocessing.StandardScaler()
train_ss_x = ss.fit_transform(train_x)
test_ss_x = ss.transform(test_x)
然后我们构造一个 KNN 分类器 knn,把训练集的数据传入构造好的 knn,并通过测试集进行结果预测,与测试集的结果进行对比,得到 KNN 分类器准确率,代码如下:
# 创建 KNN 分类器
knn = KNeighborsClassifier()
knn.fit(train_ss_x, train_y)
predict_y = knn.predict(test_ss_x)
print("KNN 准确率: %.4lf" % accuracy_score(predict_y, test_y))
KNN 准确率: 0.975
# 创建 SVM 分类器
svm = SVC()
svm.fit(train_ss_x, train_y)
predict_y=svm.predict(test_ss_x)
print('SVM 准确率: %0.4lf' % accuracy_score(predict_y, test_y))
# 采用 Min-Max 规范化
mm = preprocessing.MinMaxScaler()
train_mm_x = mm.fit_transform(train_x)
test_mm_x = mm.transform(test_x)
# 创建 Naive Bayes 分类器
mnb = MultinomialNB()
mnb.fit(train_mm_x, train_y)
predict_y = mnb.predict(test_mm_x)
print(" 多项式朴素贝叶斯准确率: %.4lf" % accuracy_score(predict_y, test_y))
# 创建 CART 决策树分类器
dtc = DecisionTreeClassifier()
dtc.fit(train_mm_x, train_y)
predict_y = dtc.predict(test_mm_x)
print("CART 决策树准确率: %.4lf" % accuracy_score(predict_y, test_y))
SVM 准确率: 0.9867
多项式朴素贝叶斯准确率: 0.8844
CART 决策树准确率: 0.8556

from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_digits
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
机器学习经典算法之KNN的更多相关文章
- Python3实现机器学习经典算法(二)KNN实现简单OCR
一.前言 1.ocr概述 OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗.亮的模式确定其形状,然 ...
- Python3实现机器学习经典算法(一)KNN
一.KNN概述 K-(最)近邻算法KNN(k-Nearest Neighbor)是数据挖掘分类技术中最简单的方法之一.它具有精度高.对异常值不敏感的优点,适合用来处理离散的数值型数据,但是它具有 非常 ...
- 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...
- Python3入门机器学习经典算法与应用
<Python3入门机器学习经典算法与应用> 章节第1章 欢迎来到 Python3 玩转机器学习1-1 什么是机器学习1-2 课程涵盖的内容和理念1-3 课程所使用的主要技术栈第2章 机器 ...
- Python3实现机器学习经典算法(三)ID3决策树
一.ID3决策树概述 ID3决策树是另一种非常重要的用来处理分类问题的结构,它形似一个嵌套N层的IF…ELSE结构,但是它的判断标准不再是一个关系表达式,而是对应的模块的信息增益.它通过信息增益的大小 ...
- 机器学习经典算法具体解释及Python实现--线性回归(Linear Regression)算法
(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測, ...
- Python3入门机器学习经典算法与应用☝☝☝
Python3入门机器学习经典算法与应用 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 使用新版python3语言和流行的scikit-learn框架,算法与 ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- Python3实现机器学习经典算法(四)C4.5决策树
一.C4.5决策树概述 C4.5决策树是ID3决策树的改进算法,它解决了ID3决策树无法处理连续型数据的问题以及ID3决策树在使用信息增益划分数据集的时候倾向于选择属性分支更多的属性的问题.它的大部分 ...
随机推荐
- Asp.NetCore程序发布到CentOs(含安装部署netcore)--最佳实践
原文:Asp.NetCore程序发布到CentOs(含安装部署netcore)--最佳实践 环境 本地 win7 服务器:Virtual Box 上的Centos ssh工具: Xshell 文件传输 ...
- 学习Hadoop和Spark的好的资源
1. 官网http://spark.apache.org 有各种资源链接: 2. 总结得很好的个人博客[从零开始学Hadoop系列]1)初识http://blog.csdn.net/u01016816 ...
- BZOJ 1483 HNOI2009 梦幻布丁 名单+启示录式的合并
标题效果:特定n布丁.每个人都有一个颜色布丁,所有的布丁反复有一定的颜色变化的颜色,颜色反复询问的段数 数据范围:n<=10W 色彩数<=100W 启发式合并名单0.0 从来不写清楚 实际 ...
- Ubuntu logomaker sh: 1: pngtopnm: not found 解决方案
暂时未找到logomaker的方法,来解决 命令替换,在文件夹: pngtopnm open_show.png > temp.ppm ppmquant 224 temp.ppm >temp ...
- C++ Primer 学习笔记_104_特殊工具与技术 --嵌套类
特殊工具与技术 --嵌套类 能够在还有一个类内部(与后面所讲述的局部类不同,嵌套类是在类内部)定义一个类,这种类是嵌套类,也称为嵌套类型.嵌套类最经常使用于定义运行类. 嵌套类是独立的类,基本上与它们 ...
- AWS核心服务概览
1.Amazon Web Service 应该可以说,Amazon Web Service目前是云计算领域的领头羊,其业务规模.开发水平和盈利能力在业界内都是首屈一指的.从本科毕业离开学校就一直做Ja ...
- SQL Server查询当前连接数
行数就是连接数,每一行是连接详情 SELECT * FROM [Master].[dbo].[SYSPROCESSES] WHERE [DBID] IN ( SELECT [DBID] FROM [M ...
- vs2017 js cordova + dotnet core 开发app
原文:vs2017 js cordova + dotnet core 开发app 1.记得在index.html加入 <meta http-equiv="Content-Securit ...
- API HOOK介绍 【转】
什么是“跨进程 API Hook”? 众所周知Windows应用程序的各种系统功能是通过调用API函数来实现.API Hook就是给系统的API附加上一段小程序,它能监视甚至控制应用程序对API函数的 ...
- 16.Oct Working Note
01 writing algorithm by assembly,but the bug... now,it runs normaly,but how to print the answer? suc ...