Test for Job
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 10137   Accepted: 2348

Description

Mr.Dog was fired by his company. In order to support his family, he must find a new job as soon as possible. Nowadays, It's hard to have a job, since there are swelling numbers of the unemployed. So some companies often use hard tests for their recruitment.

The test is like this: starting from a source-city, you may pass through some directed roads to reach another city. Each time you reach a city, you can earn some profit or pay some fee, Let this process continue until you reach a target-city. The boss will
compute the expense you spent for your trip and the profit you have just obtained. Finally, he will decide whether you can be hired.

In order to get the job, Mr.Dog managed to obtain the knowledge of the net profit Vi of all cities he may reach (a negative Vi indicates that money is spent rather than gained) and the connection between cities. A
city with no roads leading to it is a source-city and a city with no roads leading to other cities is a target-city. The mission of Mr.Dog is to start from a source-city and choose a route leading to a target-city through which he can get the maximum profit.

Input

The input file includes several test cases. 

The first line of each test case contains 2 integers n and m(1 ≤ n ≤ 100000, 0 ≤ m ≤ 1000000) indicating the number of cities and roads. 

The next n lines each contain a single integer. The ith line describes the net profit of the city iVi (0 ≤ |Vi| ≤ 20000) 

The next m lines each contain two integers xy indicating that there is a road leads from city x to city y. It is guaranteed that each road appears exactly once, and there is no way to return to a previous city. 

Output

The output file contains one line for each test cases, in which contains an integer indicating the maximum profit Dog is able to obtain (or the minimum expenditure to spend)

Sample Input

6 5
1
2
2
3
3
4
1 2
1 3
2 4
3 4
5 6

Sample Output

7

Hint

题目链接:点击打开链接

给出n个点的权值和m条路径, 问一条路的最大权值是多少.

起点入度为0, 对全部入度为0的点赋值到dp数组, 进行拓扑排序, 最后遍历出度为0的点, 求得最大值.

AC代码:

#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "queue"
#include "stack"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
#include "list"
#include "string"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int MAXN = 1e5 + 5;
int n, m, num;
int cost[MAXN], in[MAXN], out[MAXN], head[MAXN], dp[MAXN];
bool vis[MAXN];
struct node
{
/* data */
int fr, to, nxt;
}e[MAXN * 10];
void add(int x, int y)
{
e[num].fr = x;
e[num].to = y;
e[num].nxt = head[x];
head[x] = num++;
}
void toposort()
{
int cnt = 1;
while(cnt < n) {
for(int i = 1; i <= n; ++i)
if(in[i] == 0 && !vis[i]) {
vis[i] = true;
cnt++;
for(int j = head[i]; j != -1; j = e[j].nxt) {
int x = e[j].to;
in[x]--;
if(dp[i] + cost[x] > dp[x]) dp[x] = dp[i] + cost[x];
}
}
}
}
int main(int argc, char const *argv[])
{
while(scanf("%d%d", &n, &m) != EOF) {
memset(in, 0, sizeof(in));
memset(out, 0, sizeof(out));
memset(head, -1, sizeof(head));
memset(vis, false, sizeof(vis));
num = 1;
for(int i = 1; i <= n; ++i)
scanf("%d", &cost[i]);
for(int i = 1; i <= m; ++i) {
int x, y;
scanf("%d%d", &x, &y);
add(x, y);
in[y]++;
out[x]++;
}
for(int i = 1; i <= n; ++i)
if(in[i] == 0) dp[i] = cost[i];
else dp[i] = -INF;
toposort();
int ans = -INF;
for(int i = 1; i <= n; ++i)
if(out[i] == 0 && dp[i] > ans) ans = dp[i];
printf("%d\n", ans);
}
return 0;
}

POJ3249 Test for Job(拓扑排序+dp)的更多相关文章

  1. POJ 3249 拓扑排序+DP

    貌似是道水题.TLE了几次.把所有的输入输出改成scanf 和 printf ,有吧队列改成了数组模拟.然后就AC 了.2333333.... Description: MR.DOG 在找工作的过程中 ...

  2. [NOIP2017]逛公园 最短路+拓扑排序+dp

    题目描述 给出一张 $n$ 个点 $m$ 条边的有向图,边权为非负整数.求满足路径长度小于等于 $1$ 到 $n$ 最短路 $+k$ 的 $1$ 到 $n$ 的路径条数模 $p$ ,如果有无数条则输出 ...

  3. 洛谷P3244 落忆枫音 [HNOI2015] 拓扑排序+dp

    正解:拓扑排序+dp 解题报告: 传送门 我好暴躁昂,,,怎么感觉HNOI每年总有那么几道题题面巨长啊,,,语文不好真是太心痛辣QAQ 所以还是要简述一下题意,,,就是说,本来是有一个DAG,然后后来 ...

  4. 【BZOJ-1194】潘多拉的盒子 拓扑排序 + DP

    1194: [HNOI2006]潘多拉的盒子 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 456  Solved: 215[Submit][Stat ...

  5. 【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡! 最短路+拓扑排序+DP

    [BZOJ5109][CodePlus 2017]大吉大利,晚上吃鸡! Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏 ...

  6. bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  7. 【bzoj4011】[HNOI2015]落忆枫音 容斥原理+拓扑排序+dp

    题目描述 给你一张 $n$ 个点 $m$ 条边的DAG,$1$ 号节点没有入边.再向这个DAG中加入边 $x\to y$ ,求形成的新图中以 $1$ 为根的外向树形图数目模 $10^9+7$ . 输入 ...

  8. 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp

    题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...

  9. 【bzoj4562】[Haoi2016]食物链 拓扑排序+dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6832118.html 题目描述 如图所示为某生态系统的食物网示意图,据图回答第1小题 现在给你n个物种和m条能量流动 ...

随机推荐

  1. [HTML] 如何使用robots.txt防止搜索引擎抓取页面

    Robots.txt 文件对抓取网络的搜索引擎漫游器(称为漫游器)进行限制.这些漫游器是自动的,在它们访问网页前会查看是否存在限制其访问特定网页的 robots.txt 文件.如果你想保护网站上的某些 ...

  2. oracle连接数不够解决

    ora-12516: TNS: 监听程序找不到符合协议堆栈要求的可用处理程 看到如上错误出现,就要查看是否是是数据库连接数被占满了 具体的查询sql如下: select count(*) from v ...

  3. JWT和Spring Security集成

    通常情况下,把API直接暴露出去是风险很大的, 我们一般需要对API划分出一定的权限级别,然后做一个用户的鉴权,依据鉴权结果给予用户对应的API (一)JWT是什么,为什么要使用它? 互联网服务离不开 ...

  4. lua队列实现

    Queue = {} function Queue.newquene() } end function Queue.push(queue, value) queue.count = queue.cou ...

  5. [ Java ] [ JUnit ] [ Eclipse ] coverage

    官方資訊: https://www.eclemma.org/ - 簡短使用範例說明: https://dzone.com/articles/java-code-coverage-in-eclipse ...

  6. Kettle通用数据贴源作业设计

    本设计基于以下需求提出 1. 快速接入数据源表(贴源/落地) 2. 无须给单独表开发转换/作业 3. 动态生成数据源连接, 表字段等信息(预先保存在数据仓库中) 本设计所需条件 1. 数据源为关系型数 ...

  7. MIME类型记录

    Content-Disposition: attachment; filename="filename.xls" 提供下载

  8. C# 6.0新加特性

    1.自动属性的增强 1.1.自动属性初始化 (Initializers for auto-properties) C#4.0下的果断实现不了的. C#6.0中自动属性的初始化方式 只要接触过C#的肯定 ...

  9. python爬虫简单架构原理及示例

    网页下载器示例: # coding:utf-8 import urllib2 import cookielib url = "http://www.baidu.com" print ...

  10. 推荐一款能支持国密SM2浏览器——密信浏览器

    密信浏览器( MeSince Browser )是基于Chromium开源项目开发的国密安全浏览器,支持国密算法和国密SSL证书,同时也支持国际算法及全球信任SSL证书:密信浏览器使用界面清新,干净. ...