Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2987  Solved: 1111
[Submit][Status][Discuss]

Description

一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵。给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数。

Input

第一行是一个正整数n,表示树有n个结点。第二行有n个数,第i个数表示di,即树的第i个结点的度数。其中1<=n<=150,输入数据保证满足条件的树不超过10^17个。

Output

输出满足条件的树有多少棵。

Sample Input

4
2 1 2 1

Sample Output

2

HINT

 

Source

答案为

上面是整棵树的排列方案

下面是每个点重复的方案

一边除乘一边除

// luogu-judger-enable-o2
#include<cstdio>
#define int long long
using namespace std;
const int MAXN = ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') { if(c == '-')f = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int inder[MAXN], N, sum = ;
int js[MAXN];
main() {
#ifdef WIN32
freopen("a.in", "r", stdin);
#endif
N = read();
js[] = js[] = ;
for(int i = ; i <= ; i++) js[i] = js[i-] * i;
for(int i = ; i <= N; i++) {
inder[i] = read(); sum += inder[i] - ;
if(inder[i] == && N != ) {printf("");return ;}
}
if(sum != N - ) {printf("");return ;}
int Now = , times = ;
for(int i = ; i <= N - ; i++) {
Now *= i;
if(times > N) break;
if(Now % js[ inder[times] - ] == ) Now /= js[ inder[times] - ], times++;
}
printf("%lld",Now);
return ;
}

BZOJ1211: [HNOI2004]树的计数(prufer序列)的更多相关文章

  1. bzoj1211: [HNOI2004]树的计数 prufer序列裸题

    一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di ...

  2. bzoj1211: [HNOI2004]树的计数 prufer编码

    题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...

  3. Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数

    最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...

  4. BZOJ 1211 HNOI2004 树的计数 Prufer序列

    题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...

  5. 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度

    [BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...

  6. [HNOI2004] 树的计数 - prufer序列

    给定树每个节点的 degree,问满足条件的树的数目. \(n\leq 150, ans \leq 10^{17}\) Solution 注意特判各种坑点 \(\sum d_i - 1 = n-2\) ...

  7. 树的计数 + prufer序列与Cayley公式(转载)

    原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博 ...

  8. bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)

    1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数 ...

  9. prufer BZOJ1211: [HNOI2004]树的计数

    以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 p ...

随机推荐

  1. Linux 之secureCRT连接SSH

    1.登陆linux系统,打开终端命令.输入 rpm -qa |grep ssh 查找当前系统是否已经安装. 2.如果没有安装SSH软件包,可以通过yum  或rpm安装包进行安装. .3.安装好了之后 ...

  2. Vuex教程简单实例

    什么是Vuex? vuex是一个专门为vue.js设计的集中式状态管理架构.状态?我把它理解为在data中的属性需要共享给其他vue组件使用的部分,就叫做状态.简单的说就是data中需要共用的属性. ...

  3. 一键安装本地yum仓库脚本

    #!/bin/bash#By:zhaocheng#Date:2019-01-18#Version v1 [ -d /media/cdrom ] || mkdir /media/cdrom[ -d /m ...

  4. python基础1 格式化输出

    转载自:https://www.cnblogs.com/fat39/p/7159881.html %用法 1.整数输出 %o —— oct 八进制%d —— dec 十进制%x —— hex 十六进制 ...

  5. Running to the End(Codeforces & AtCoder 百套计划)

    ...Reserved for the future... 仿照xxy dalao的CF&CC百套计划,做了一个Codeforces & AtCoder 百套计划,按这个速度刷下去,每 ...

  6. 关于使用element中的popup问题

    高产似母猪..写完上篇看了几集新番就空虚了..零点时分决定爬起来,趁着清明假期能写多写点. 1.前言 我们知道弹出框都是在触发了某种条件后展示,而一个个的新的弹出框的展示,总是覆盖着上一个弹出框.实现 ...

  7. opencv学习HighGUI图形用户界面初步【1】

    HighGUI是图形用户界面模块.包括:1.输入与输出:2.视频捕捉:3.图形和视频的解码编码:4.图形交界面与接口. 由于opencv.hpp包含了core.objdetect.ingproc.ph ...

  8. JavaSE 学习笔记之封装(四)

    封 装(面向对象特征之一):是指隐藏对象的属性和实现细节,仅对外提供公共访问方式. 好处:将变化隔离:便于使用:提高重用性:安全性. 封装原则:将不需要对外提供的内容都隐藏起来,把属性都隐藏,提供公共 ...

  9. FADE:云存储中数据安全删除

         FADE: Secure Overlay Cloud Storage with File Assured Deletion ,论文发表于SecureComm,C类.      香港大学的研究 ...

  10. 洛谷——P1910 L国的战斗之间谍

    https://www.luogu.org/problem/show?pid=1910#sub 题目背景 L国即将与I国发动战争!! 题目描述 俗话说的好:“知己知彼,百战不殆”.L国的指挥官想派出间 ...