【hiho一下 第十一周】树中的最长路
【题目链接】:http://hihocoder.com/problemset/problem/1050
【题意】
【题解】
有一个经典的求树的直径的方法;
首先;
树的直径的两端的端点必然都在树的叶子上(或在根节点,考虑一条链的情况);
则
设f[i][0]表示离i这个点最远的叶子节点的距离
f[i][1]表示离i这个点第二远的叶子节点的距离
更新的话
f[x][0]=max(f[son][0]+1);
f[x][1] = max(second(f[son][0])+1);
则可以通过dp求出来所有的节点的f值,取max{f[i][0]+f[i][1]}就是它的直径了;
这里我们可以降成一维的即
ans = max(ans,f[x]+f[son]+1),f[x]=max(f[son]+1);
这里f[x]=max(f[son]+1)在ans更新完后才更新;
这个做法就等同于上面那个做法;
【Number Of WA】
0
【完整代码】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 1e5+100;
int n,f[N],ans;
vector <int> G[N];
void dfs(int x,int fa)
{
f[x] = 0;
for (int y:G[x])
{
if (y==fa) continue;
dfs(y,x);
ans = max(ans,f[x]+f[y]+1);
f[x] = max(f[x],f[y]+1);
}
}
int main()
{
//freopen("F:\\rush.txt","r",stdin);
ios::sync_with_stdio(false),cin.tie(0);//scanf,puts,printf not use
cin >> n;
rep1(i,1,n-1)
{
int x,y;
cin >> x >> y;
G[x].pb(y),G[y].pb(x);
}
dfs(1,0);
cout << ans << endl;
return 0;
}
【hiho一下 第十一周】树中的最长路的更多相关文章
- HihoCoder第十一周:树中的最长路
#1050 : 树中的最长路 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中, ...
- hiho #1050 : 树中的最长路 树的直径
#1050 : 树中的最长路 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中, ...
- [HIHO] 1050 树中的最长路
#1050 : 树中的最长路 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中, ...
- hihocoder 1050 树中的最长路(动态规划,dfs搜索)
hihocoder 1050 树中的最长路(动态规划,dfs搜索) Description 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中,小Ho发现他不仅 ...
- hihocoder#1050 : 树中的最长路(树中最长路算法 两次BFS找根节点求最长+BFS标记路径长度+bfs不容易超时,用dfs做TLE了)
#1050 : 树中的最长路 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中, ...
- hihoCoder 1050 树中的最长路 最详细的解题报告
题目来源:树中的最长路 解题思路:枚举每一个点作为转折点t,求出以t为根节点的子树中的‘最长路’以及与‘最长路’不重合的‘次长路’,用这两条路的长度之和去更新答案,最终的答案就是这棵树的最长路长度.只 ...
- 题解报告:hihoCoder #1050 : 树中的最长路
描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中,小Ho发现他不仅仅可以拼凑成一棵二叉树!还可以拼凑成一棵多叉树——好吧,其实就是更为平常的树而已. 但 ...
- hihoCoder week11 树中的最长路
题目链接: https://hihocoder.com/contest/hiho11/problem/1 求树中节点对 距离最远的长度 #include <bits/stdc++.h> u ...
- HihoCoder1050 树中的最长路 树形DP第三题(找不到对象)
题意:求出的树中距离最远的两个结点之间相隔的距离. 水题一道,以前只会用路的直径来解. 代码如下: #include<cstdio> #include<cstdlib> #in ...
随机推荐
- 8 Reasons why SharePoint is Bad for Your Business 8个理由告诉你,为什么SharePoint对你的业务有害
8 Reasons why SharePoint is Bad for Your Business 8个理由告诉你,为什么SharePoint对你的业务有害 SharePoint近期已 ...
- HDOJ GCD 2588【欧拉函数】
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- XML基础+Java解析XML +几种解析方式的性能比较
XML基础+Java解析XML 一:XML基础 XML是什么: 可扩展的标记语言 XML能干什么: 描述数据.存储数据.传输(交换)数据. XML与HTML区别: 目的不一样 XML 被设计用来描述数 ...
- vim设置为indent折叠以后,每次打开文件时代码处于折叠状态,能改变吗?
vim设置为indent折叠以后,每次打开文件时代码处于折叠状态.即使这次编辑的时候把折叠展开,保存关闭文件,重新打开,所有的代码都又折叠起来了. 请问有没有默认不折叠的方法? 是否有可以一次展开所有 ...
- Build website project by roslyn through devenv.com
1.fetch the source code2.compile controls project3.copy files under bin folder of controls to bin fo ...
- Dragon Ball--hdoj
Dragon Ball Problem Description Five hundred years later, the number of dragon balls will increase u ...
- hdoj--1598--find the most comfortable road
find the most comfortable road Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- nyoj--44--子串和(动态规划)
子串和 时间限制:5000 ms | 内存限制:65535 KB 难度:3 描述 给定一整型数列{a1,a2...,an},找出连续非空子串{ax,ax+1,...,ay},使得该子序列的和最大, ...
- 安装MySQL最后一步出现错误Error Nr.1045解决方法
转自:https://blog.csdn.net/gsls200808/article/details/46846019 安装MySQL最后一步出现错误Error Nr.1045 Connection ...
- Web进行压力测试的小工具
在Linux下对Web进行压力测试的小工具有很多,比较出名的有AB.虽然AB可以运行在windows下,但对于想简单界面操作的朋友有点不太习惯.其实vs.net也提供压力测试功能但显然显得太重了,在测 ...