BZOJ 4241 分块
思路:
考虑分块
f[i][j]表示从第i块开头到j的最大值
cnt[i][j]表示从第i块开始到序列末尾j出现了多少次
边角余料处理一下就好啦~
//By SiriusRen
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=;
int n,q,Block,a[N],block[N],cpy[N],u;
int xx,yy,cnt[][N],top,stk[N],num[N];
typedef long long ll;ll f[][N],ans;
int main(){
scanf("%d%d",&n,&q),Block=sqrt(n);
for(int i=;i<=n;i++)scanf("%d",&a[i]),block[i]=(i-)/Block+,cpy[i]=a[i];
sort(cpy+,cpy++n),u=unique(cpy+,cpy++n)-cpy-;
for(int i=;i<=n;i++)a[i]=lower_bound(cpy+,cpy++u,a[i])-cpy;
for(int i=;i<=block[n];i++){
ll now=;
for(int j=lower_bound(block+,block++n,i)-block;j<=n;j++)
cnt[i][a[j]]++,now=max(now,(ll)cnt[i][a[j]]*cpy[a[j]]),f[i][j]=now;
}
while(q--){
scanf("%d%d",&xx,&yy),ans=f[block[xx]+][yy],top=;
int temp=lower_bound(block+,block++n,block[yy])-block;
for(int i=temp;i<=yy;i++)num[a[i]]++,stk[++top]=a[i];
temp=lower_bound(block+,block++n,block[xx]+)-block;
for(int i=xx;i<temp;i++){
num[a[i]]++,ans=max(ans,(ll)(cnt[block[xx]+][a[i]]-cnt[block[yy]][a[i]]+num[a[i]])*cpy[a[i]]);
stk[++top]=a[i];
}
temp=lower_bound(block+,block++n,block[yy])-block;
for(int i=temp;i<=yy;i++)
ans=max(ans,(ll)(cnt[block[xx]+][a[i]]-cnt[block[yy]][a[i]]+num[a[i]])*cpy[a[i]]);
for(int i=;i<=top;i++)num[stk[i]]=;
printf("%lld\n",ans);
}
}
BZOJ 4241 分块的更多相关文章
- bzoj 4241 历史研究——分块(区间加权众数)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4241 套路:可以大力预处理,如果求区间加权众数,可以预处理i~j块(或 j 位置)的最大值, ...
- BZOJ.4241.历史研究(回滚莫队 分块)
题目链接 \(Description\) 长度为n的数列,m次询问,每次询问一段区间最大的 \(A_i*tm_i\) (重要度*出现次数) \(Solution\) 好像可以用莫队做,但是取max的操 ...
- BZOJ 4241 历史研究(分块)
题意 题解 #include<iostream> #include<cstring> #include<cstdio> #include<cmath> ...
- BZOJ 4241: 历史研究——莫队 二叉堆
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4241 题意:N个int范围内的数,M次询问一个区间最大的(数字*出现次数)(加权众数),可以 ...
- BZOJ 4241 历史研究
Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. ...
- bzoj 2821 分块处理
大题思路就是分块,将n个数分成sqrt(n)个块,然后 处理出一个w数组,w[i,j]代表第i个块到第j个块的答案 那么对于每组询问l,r如果l,r在同一个块中,直接暴力做就行了 如果不在同一个块中, ...
- bzoj 2741 分块+可持久化trie
多个询问l,r,求所有子区间异或和中最大是多少 强制在线 做法: 分块+可持久化trie 1.对于每块的左端点i,预处理出i到任意一个j,()i,j)间所有子区间异或和中最大为多少,复杂度O(\(n\ ...
- bzoj 2821 分块
分块: 先预处理,将原序列分成长度为len的许多块,计算从第i块到第j块的答案,(可以做到O(n*n/len)). 每次询问时,将询问的区间分成三部分,:左边,中间,右边,中间是尽量大的一个块区间,其 ...
- BZOJ - 2741 分块维护最大连续异或和
题意:给定\(a[l...r]\),多次询问区间\([l,r]\)中的最大连续异或和\(a_i⊕a_{i+1}⊕...⊕a_{j},l≤i≤j≤r\) 一眼过去认为是不可做的,但题目给出\(n=1.2 ...
随机推荐
- Java基础11一常用类
1.包装类 byte---java.lang.Byte char---java.lang.Character short—java.lang.Short int---java.lang.Integer ...
- JavaScript实现网页换肤
<html> <head> <meta charset="utf-8"> <title>无标题文档</title> &l ...
- Task.Factory.StartNew多线程中将数值实时传递到UI显示
private void button1_Click(object sender, EventArgs e) { Task t1 = Task.Factory.StartNew(() => k1 ...
- SQLite Tips
附加数据库 Attach database filename as database_name; 主数据库默认为 "Main", 在使用Attach命令时, 不能将database ...
- [转]Git入门与实践(一)
git入门与实践(一) · March 10th, 2010 · Posted in UNIX环境编程 · By ghosTM55 Write comment ...
- 在线场景感知:图像稀疏表示—ScSPM和LLC总结(以及lasso族、岭回归)
前言: 场景感知其实不分三维场景和二维场景,可以使用通用的方法,不同之处在于数据的形式,以及导致前期特征提取及后期在线场景分割过程.场景感知即是场景语义分析问题,即分析场景中物体的特征组合与相应场景的 ...
- CorelDRAWX8新功能摆脱传统工作模式
最近,有一则好消息CorelDRAW X8特惠啦!功能不少价格却不高的CDR X8很快成了设计师们的新宠,三折之后你动心了么? 点击这里了解更多.. 那么CDR X8到底有何功能和亮点呢? 完全可自定 ...
- spring注解@Autowired和@Resource比较
用途:都是做bean的注入时使用 历史:@Autowired 属于Spring的注解 org.springframework.beans.factory.annotation.Au ...
- 使用Ansible安装部署nginx+php+mysql之安装php(2)
二.使用Ansible安装php 1.php.yaml文件内容 - hosts: clong remote_user: root gather_facts: no tasks: # 安装libseli ...
- 关于mvc架构的浅谈
MVC全名是Model View Controller,是模型(model)-视图(view)-控制器(controller)的缩写,一种软件设计典范,用一种业务逻辑.数据.界面显示分离的方法组织代码 ...