这两天时间都浪费在解决各种栈溢出了,没想到最后各个部件合在一起的时候会出现这么多的问题,这其实是我第一次解决栈溢出问题,很认真的查了查资料,找了几种解决方法,但是作用都不大,拆了东墙补西墙,虽然知道及时申请内存其实可以避免的,但是很多天的连续编码,让我已经不想再费神再改了,所以我在文章最后可以给大家一种暴力解决法。

首先跟大家分享一下我找到的一些知识。

如果定义数组变量太大,将会出现栈溢出。因为定义的变量存储在栈中,而编译器分配的栈内存很小。用malloc申请内存相当于使用了堆内存,下面给大家说一些关于堆和栈的东西吧

(假如对这一段理论知识不感兴趣的可以直接跳到最后看图片,有暴力解决法,哈哈)

Windows操作系统堆和栈的区别

堆和栈的区别

一、预备知识—程序的内存分配
一个由c/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap) — 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后有系统释放 
4、文字常量区—常量字符串就是放在这里的。 程序结束后由系统释放
5、程序代码区—存放函数体的二进制代码。
二、例子程序 
这是一个前辈写的,非常详细

//main.cpp
int a = ; 全局初始化区
char *p1; 全局未初始化区
main()
{
int b; 栈
char s[] = "abc"; 栈
char *p2; 栈
char *p3 = ""; \0在常量区,p3在栈上。
static int c =; 全局(静态)初始化区
p1 = (char *)malloc();
p2 = (char *)malloc();
分配得来得10和20字节的区域就在堆区。
strcpy(p1, ""); \0放在常量区,编译器可能会将它与p3所指向的""优化成一个地方。

二、堆和栈的理论知识 
2.1申请方式 
stack: 
由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间 
heap: 
需要程序员自己申请,并指明大小,在c中malloc函数 
如p1 = (char *)malloc(10); 
在C++中用new运算符 
如p2 = (char *)malloc(10); 
但是注意p1、p2本身是在栈中的。

2.2 申请后系统的响应 
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。 
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时, 
会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

2.3申请大小的限制 
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。 
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

2.4申请效率的比较: 
栈由系统自动分配,速度较快。但程序员是无法控制的。 
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便. 
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。

2.5堆和栈中的存储内容 
栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。 
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。 
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

2.6存取效率的比较

char s1[] = "aaaaaaaaaaaaaaa"; 
char *s2 = "bbbbbbbbbbbbbbbbb"; 
aaaaaaaaaaa是在运行时刻赋值的; 
而bbbbbbbbbbb是在编译时就确定的; 
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。 
比如:

#include
void main()
{
char a = ;
char c[] = "";
char *p ="";
a = c[];
a = p[];
return;
}

对应的汇编代码

: a = c[];
8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 4D FC mov byte ptr [ebp-],cl
: a = p[];
0040106D 8B EC mov edx,dword ptr [ebp-14h]
8A mov al,byte ptr [edx+]
FC mov byte ptr [ebp-],al

第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。

2.7小结: 
堆和栈的区别可以用如下的比喻来看出: 
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。 
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

Windows进程中的内存结构

在阅读本文之前,如果你连堆栈是什么多不知道的话,请先阅读文章后面的基础知识。

接触过编程的人都知道,高级语言都能通过变量名来访问内存中的数据。那么这些变量在内存中是如何存放的呢?程序又是如何使用这些变量的呢?下面就会对此进行深入的讨论。下文中的C语言代码如没有特别声明,默认都使用VC编译的release版。

首先,来了解一下 C 语言的变量是如何在内存分部的。C 语言有全局变量(Global)、本地变量(Local),静态变量(Static)、寄存器变量(Regeister)。每种变量都有不同的分配方式。先来看下面这段代码:

#include 

int g1=, g2=, g3=;

int main()
{
static int s1=, s2=, s3=;
int v1=, v2=, v3=; //打印出各个变量的内存地址 printf("0x%08x\n",&v1); //打印各本地变量的内存地址
printf("0x%08x\n",&v2);
printf("0x%08x\n\n",&v3);
printf("0x%08x\n",&g1); //打印各全局变量的内存地址
printf("0x%08x\n",&g2);
printf("0x%08x\n\n",&g3);
printf("0x%08x\n",&s1); //打印各静态变量的内存地址
printf("0x%08x\n",&s2);
printf("0x%08x\n\n",&s3);
return ;
}

编译后的执行结果是:

0x0012ff78
0x0012ff7c
0x0012ff80 0x004068d0
0x004068d4
0x004068d8 0x004068dc
0x004068e0
0x004068e4

输出的结果就是变量的内存地址。其中v1,v2,v3是本地变量,g1,g2,g3是全局变量,s1,s2,s3是静态变量。你可以看到这些变量在内存是连续分布的,但是本地变量和全局变量分配的内存地址差了十万八千里,而全局变量和静态变量分配的内存是连续的。这是因为本地变量和全局/静态变量是分配在不同类型的内存区域中的结果。对于一个进程的内存空间而言,可以在逻辑上分成3个部份:代码区,静态数据区和动态数据区。动态数据区一般就是“堆栈”。“栈(stack)”和“堆(heap)”是两种不同的动态数据区,栈是一种线性结构,堆是一种链式结构。进程的每个线程都有私有的“栈”,所以每个线程虽然代码一样,但本地变量的数据都是互不干扰。一个堆栈可以通过“基地址”和“栈顶”地址来描述。全局变量和静态变量分配在静态数据区,本地变量分配在动态数据区,即堆栈中。程序通过堆栈的基地址(BP)和偏移量(SP)来访问本地变量。

想必大家看上面的这些东西有些烦了吧,我给大家提供一种方法,我自己测试一下可行。

在项目属性,选中后弹出窗口,照图中更改那个栈的大小就行了。这个应该还可以解决的,希望能解决大家的问题吧,谢谢了

VS运行程序发生栈溢出的分析的更多相关文章

  1. 应用程序发生异常 unknown software exception (0xc00000fd)... - 栈溢出(Stack overflow)

    今天在写程序的时候,弹出这样的提示对话框: 应用程序发生异常 unknown software exception (0xc00000fd): 相关代码是这样,在一个函数中读取一个csv文件,先根据这 ...

  2. 关于C++程序运行程序是出现的this application has requested the runtime to terminate it in an unusual way. 异常分析

    今天运行程序是出现了this application has requested the runtime  to terminate it in an unusual way. 的异常报告,以前也经常 ...

  3. Vivotek 摄像头远程栈溢出漏洞分析及利用

    Vivotek 摄像头远程栈溢出漏洞分析及利用 近日,Vivotek 旗下多款摄像头被曝出远程未授权栈溢出漏洞,攻击者发送特定数据可导致摄像头进程崩溃. 漏洞作者@bashis 放出了可造成摄像头 C ...

  4. 操作系统篇-hello world(免系统运行程序)

     || 版权声明:本文为博主原创文章,未经博主允许不得转载. 一.前言     今天起开始分享关于操作系统的相关知识,本人也是菜鸟一个,正处于学习阶段,这整个操作系统篇也是我边学习边总结的一些结果,希 ...

  5. AHK(1)之运行程序或打开文档

    小鸟学AHK(1)之运行程序或打开文档   AHK就是AutoHotKey,是一款免费的.Windows平台下开放源代码的热键脚本语言. 亲爱的朋友,叫我怎么向你推荐它呢! COOL,对,就是酷,那么 ...

  6. DLink 815路由器栈溢出漏洞分析与复现

    DLink 815路由器栈溢出漏洞分析与复现 qemu模拟环境搭建 固件下载地址 File DIR-815_FIRMWARE_1.01.ZIP - Firmware for D-link DIR-81 ...

  7. Android中插件开发篇之----动态加载Activity(免安装运行程序)

    一.前言 又到周末了,时间过的很快,今天我们来看一下Android中插件开发篇的最后一篇文章的内容:动态加载Activity(免安装运行程序),在上一篇文章中说道了,如何动态加载资源(应用换肤原理解析 ...

  8. MongoDB源码分析——mongod程序源码入口分析

    Edit 说明:第一次写笔记,之前都是看别人写的,觉得很简单,开始写了之后才发现真的很难,不知道该怎么分析,这篇文章也参考了很多前辈对MongoDB源码的分析,也有一些自己的理解,后续将会继续分析其他 ...

  9. gdb运行时结合汇编堆栈分析

    一.从源代码文件到可执行文件         从C文件到可执行文件,一般来说需要两步,先将每个C文件编译成.o文件,再把多个.o文件和链接库一起链接成可执行文件.但具体来说,其实是分为四步,下面以ex ...

随机推荐

  1. jquery选择器的一些处理

    本文不讨论用jquery选择器具体怎么选择页面元素,而讨论选择元素后后的一些处理 jquery的选择器选择元素的时候,即使没有选择到指定的对象,页面并不会报错,例子: <!doctype htm ...

  2. linux下载命令wget

    Linux wget是一个下载文件的工具,它用在命令行下.对于Linux用户是必不可少的工具,尤其对于网络管理员,经常要下载一些软件或从远程服务器恢复备份到 本地服务器.如果我们使用虚拟主机,处理这样 ...

  3. HDU 1021 Fibonacci Again( 同余水 )

    链接:传送门 题意:现在给出 Fibonacci numbers: F(0) = 7, F(1) = 11, F(n) = F(n-1) + F(n-2) (n>=2).问第 n 项能不能整除 ...

  4. [1] first day

    一.几个工具包 [1]pandas(数据分析工具) https://zhuanlan.zhihu.com/p/33230331 https://zhuanlan.zhihu.com/p/2501351 ...

  5. P1423 小玉在游泳

    ... 题目描述 小玉开心的在游泳,可是她很快难过的发现,自己的力气不够,游泳好累哦.已知小玉第一步能游2米,可是随着越来越累,力气越来越小,她接下来的每一步都只能游出上一步距离的98%.现在小玉想知 ...

  6. 00070_Calendar

    1.Calendar类概念 (1)Calendar是日历类,在Date后出现,替换掉了许多Date的方法.该类将所有可能用到的时间信息封装为静态成员变量,方便获取: (2)Calendar为抽象类,由 ...

  7. ES scroll(ES游标) 解决深分页

    ES scroll(ES游标) 解决深分页. Why 当Elasticsearch响应请求时,它必须确定docs的顺序,排列响应结果.如果请求的页数较少(假设每页20个docs), Elasticse ...

  8. BigDecimal类(高精度小数)

    位置:java.math.BigDecimal 作用:提供高精度小数数据类型及相关操作 一.基本介绍 BigDecimal为不可变的.任意精度的有符号十进制数,其值为(unscaledValue * ...

  9. HDU 3306

    先转一些   http://www.cnblogs.com/frog112111/archive/2013/05/19/3087648.html Fibonacci数列:F(0)=1 , F(1)=1 ...

  10. Android 自己定义View学习(2)

    上一篇学习了基本使用方法,今天学一下略微复杂一点的.先看一下效果图 为了完毕上面的效果还是要用到上一期开头的四步 1,属性应该要有颜色,要有速度 <?xml version="1.0& ...