PRML Chapter3
曲线拟合的几种方法
最大似然估计MLE,最大后验概率MAP:MLE和MAP
MLE
给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”。最大化:
MAP
假如这个参数有一个先验概率,比如说,在抛硬币的例子中,假如我们的经验告诉我们,硬币一般都是匀称的,也就是μ=0.5的可能性最大,μ=0.2的可能性比较小,那么参数该怎么估计呢?这就是MAP要考虑的问题。 MAP优化的是一个后验概率,即给定了观测值后使概率最大:
把上式根据贝叶斯公式展开:
求导,得最值即可。
线性模型的概念
函数关于参数,而非输入变量input variable是线性的,则是线性模型。
如线性基函数模型linear basis function model:y(x,w)=wTφ(x)
其中,φ(x)(basis function)可以任意选择,而函数y(x,w)关于w始终是线性的,基函数可以的选择有:多项式polynomial,高斯函数Gaussian,sigmoid函数,Fourier basis,wavelets
Bayesian的模型复杂度理论:贝叶斯为何能够防止过拟合?
PRML Chapter3的更多相关文章
- PRML
PRML 学习之 第一章 介绍 Introduction #欢迎共同学习和讨论,由于本文将不断修改,谢绝转载 模式识别问题具有重要且久远的历史.比如,16世纪开普勒发现行星运动定律,又如20世纪出发现 ...
- PRML读书会第十四章 Combining Models(committees,Boosting,AdaBoost,决策树,条件混合模型)
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:57:18 大家好,今天我们讲一下第14章combining models,这一章是联合模型,通过将多个模型以某种形式 ...
- PRML读书会第十三章 Sequential Data(Hidden Markov Models,HMM)
主讲人 张巍 (新浪微博: @张巍_ISCAS) 软件所-张巍<zh3f@qq.com> 19:01:27 我们开始吧,十三章是关于序列数据,现实中很多数据是有前后关系的,例如语音或者DN ...
- PRML读书会第十二章 Continuous Latent Variables(PCA,Principal Component Analysis,PPCA,核PCA,Autoencoder,非线性流形)
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:00:49 我今天讲PRML的第十二章,连续隐变量.既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是 ...
- PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00 今天的主要内容:Markov Chain Monte Carlo,M ...
- PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field )
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件 ...
- PRML读书会第九章 Mixture Models and EM(Kmeans,混合高斯模型,Expectation Maximization)
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:10:56 今天的主要内容有k-means.混合高斯模型. EM算法.对于k-me ...
- PRML读书会第八章 Graphical Models(贝叶斯网络,马尔科夫随机场)
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:52:10 今天的内容主要是: 1.贝叶斯网络和马尔科夫随机场的概念,联合概率分解,条件独立表示:2.图的概率推断in ...
- PRML读书会第七章 Sparse Kernel Machines(支持向量机, support vector machine ,KKT条件,RVM)
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:59:22 大家好,今天一起交流下PRML第7章.第六章核函数里提到,有一类机器学习算法,不是对参数做点估计或求其分 ...
随机推荐
- Cocos2d-x V3.2+Cocos Studio1.6 实现一个简单的uibutton点击功能
好久没写博客了 这几天在学习cocos studio,这个软件可以很方便的设计游戏的一些界面,并导入到cocos2dx中,今天就用button来做个样例 首先我们打开Cocos Studio1.6,选 ...
- 【BZOJ 1012】 [JSOI2008]最大数maxnumber(线段树做法)
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1012 [题意] [题解] 预开一个20W长度的线段树; 这里a[1..20W]={0} ...
- METHODS OF AND APPARATUS FOR USING TEXTURES IN GRAPHICS PROCESSING SYSTEMS
BACKGROUND The technology described herein relates to methods of and apparatus for using and handlin ...
- Android之assets资源目录的各种操作
第一种方法: String path = file:///android_asset/文件名; 第二种方法: InputStream abpath = getClass() ...
- Android 升级下载 它们的定义Updates 兼容版本
Android 更新模块 它们的定义Update 写这个总结是由于在项目中碰到了Android系统兼容的BUG Android项目原本使用的是API提供的下载方法 例如以下: Download ...
- CMake 添加头文件目录,链接动态、静态库(添加子文件夹)
CMake支持大写.小写.混合大小写的命令. 当编译一个需要第三方库的项目时,需要知道: 去哪找头文件(.h),-I(GCC) INCLUDE_DIRECTORIES() 去哪找库文件(.so/.dl ...
- HDU 1143 Tri Tiling (递推)
Tri Tiling Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- MySQL 关键字和保留字
ACCESSIBLE (R) ACCOUNT[a] ACTION ADD (R) AFTER AGAINST AGGREGATE ALGORITHM ALL (R) ALTER (R) ALWAYS[ ...
- QList介绍(QList比QVector更快,这是由它们在内存中的存储方式决定的。QStringList是在QList的基础上针对字符串提供额外的函数。at()操作比操作符[]更快,因为它不需要深度复制)非常实用
FROM:http://apps.hi.baidu.com/share/detail/33517814 今天做项目时,需要用到QList来存储一组点.为此,我对QList类的说明进行了如下翻译. QL ...
- 重设windows10中的sub linux系统用户密码
原文:重设windows10中的sub linux系统用户密码 版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/haiyoung/article/detai ...