https://www.luogu.org/problem/show?pid=2647

题目描述

现在你面前有n个物品,编号分别为1,2,3,……,n。你可以在这当中任意选择任意多个物品。其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的收益;但是,你选择该物品以后选择的所有物品的收益都会减少Ri。现在请你求出,该选择哪些物品,并且该以什么样的顺序选取这些物品,才能使得自己获得的收益最大。

注意,收益的减少是会叠加的。比如,你选择了第i个物品,那么你就会获得了Wi的收益;然后你又选择了第j个物品,你又获得了Wj-Ri收益;之后你又选择了第k个物品,你又获得了Wk-Ri-Rj的收益;那么你获得的收益总和为Wi+(Wj-Ri)+(Wk-Ri-Rj)。

输入输出格式

输入格式:

第一行一个正整数n,表示物品的个数。

接下来第2行到第n+1行,每行两个正整数Wi和Ri,含义如题目所述。

输出格式:

输出仅一行,表示最大的收益。

输入输出样例

输入样例#1:

2
5 2
3 5
输出样例#1:

6

说明

20%的数据满足:n<=5,0<=Wi,Ri<=1000。

50%的数据满足:n<=15,0<=Wi,Ri<=1000。

100%的数据满足:n<=3000,0<=Wi,Ri<=200000。

样例解释:我们可以选择1号物品,获得了5点收益;之后我们再选择2号物品,获得3-2=1点收益。最后总的收益值为5+1=6。

f[i][j]表示在前i个物品里,选j个的最大收益

f[i]j[j]=max(f[i-1][j],f[i-1][j-1]+w[i]-r[i]*(j-1);

ans=max{f[n][i]}。

 #include <algorithm>
#include <cstdio> #define max(a,b) (a>b?a:b)
inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
} const int N();
int n,f[N][N],ans;
struct Thing {
int w,r;
bool operator < (const Thing x)const
{
return r>x.r;
}
}a[N]; int AC()
{
read(n);
for(int i=; i<=n; ++i)
read(a[i].w),read(a[i].r);
std::sort(a+,a+n+);
f[][]=a[].w;
for(int i=; i<=n; ++i)
for(int j=; j<=i; ++j)
f[i][j]=max(f[i-][j],f[i-][j-]+a[i].w-a[i].r*(j-));
for(int i=; i<=n; ++i) ans=max(ans,f[n][i]);
printf("%d\n",ans);
return ;
} int Aptal=AC();
int main(){;}

洛谷—— P2647 最大收益的更多相关文章

  1. 洛谷P2647 最大收益

    P2647 最大收益 题目描述 现在你面前有n个物品,编号分别为1,2,3,……,n.你可以在这当中任意选择任意多个物品.其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的 ...

  2. 洛谷 P2647 最大收益

    我是题面 恩,贪心,鉴定完毕. 一个物品是否放进来,取决于它是否能对答案做出贡献. 那物品i的贡献就是\(w[i]-r[i]\) 可是收益的减少是会叠加的 那就是\(w[i]-j*r[i]\),j表示 ...

  3. 洛谷 P2647 最大收益 题解

    题面 对于“n个物品选任意个”我们就可以想到一种递推方法,即设f[i][j]表示前i个物品选j个的最大收益 我们发现正着转移并不好转移,我们可以倒着转移,使选择的当前第i号物品为第一个物品,这样的话我 ...

  4. 【洛谷P2647】最大收益

    题目大意 现在你面前有n个物品,编号分别为1,2,3,--,n.你可以在这当中任意选择任意多个物品.其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的收益:但是,你选择该物 ...

  5. 洛谷P4307 球队收益

    题意:有n个球队,m场比赛. 每个球队都已经有些胜负场次了. 每个球队的收益为Ci * wini2 - Di * losei2. 求最小可能总收益. 解: 先看出一个模型:用一流量代表一个胜场,每场比 ...

  6. 洛谷 P3410 拍照

    洛谷 P3410 拍照 题目描述 小B有n个下属,现小B要带着一些下属让别人拍照. 有m个人,每个人都愿意付给小B一定钱让n个人中的一些人进行合影.如果这一些人没带齐那么就不能拍照,小B也不会得到钱. ...

  7. 洛谷P4014 分配问题【最小/大费用流】题解+AC代码

    洛谷P4014 分配问题[最小/大费用流]题解+AC代码 题目描述 有 n 件工作要分配给 n 个人做.第 i 个人做第 j 件工作产生的效益为c ij. 试设计一个将 n 件工作分配给 n 个人做的 ...

  8. 洛谷 P2762 太空飞行计划问题 P3410 拍照【最大权闭合子图】题解+代码

    洛谷 P2762 太空飞行计划问题 P3410 拍照[最大权闭合子图]题解+代码 最大权闭合子图 定义: 如果对于一个点集合,其中任何一个点都不能到达此集合以外的点,这就叫做闭合子图.每个点都有一个权 ...

  9. BZOJ1855或洛谷2569 [SCOI2010]股票交易

    一道单调队列优化\(DP\) BZOJ原题链接 洛谷原题链接 朴素的\(DP\)方程并不难想. 定义\(f[i][j]\)表示到第\(i\)天,手上持有\(j\)股时的最大收益. 转移方程可以分成四个 ...

随机推荐

  1. PCB拼板之单一矩形排样算法

    算法实现相关内容整理如下: 一.排样变量与关系 此算法,基于固定4边的尺寸遍历每个单只板的长宽得到最优解. 二.条件约束 基本约束条件(参考上图变量) 三.排样图形相同类型规律 由于计算量大,为了有效 ...

  2. JS网页播放声音实现代码兼容各种浏览器

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. EditPlus 4:设置字体

    打开软件上面菜单栏点击Tools,在此下拉栏点击Configure User Tools,在弹出的设置框在左边框框中找到General->Fonts,显示的左边框即为字体框,具体如图:

  4. ListView(2)最简单的上拉刷新、下拉刷新代码

    效果 最简单的上拉刷新和下拉刷新,当listview滚动到底部时向上拉刷新数据.当listview滚动到最顶部时下拉刷新.       图1,上拉刷新 图2,下拉刷新 1.设置lisview 加载he ...

  5. net .异步委托知识

    以前在编程中,异步用的比较少,导致C# 一些基础的 东西用法都不怎么熟悉,经常要用的时候在去查找资料比较被动,而已没真正里面理解起来,始终感觉不是自己的知识 (题外话) 首先委托关键字  Delega ...

  6. 改善用户体验 Web前端优化策略总结

    前端是庞大的,包括HTML.CSS.Javascript.Image.Flash等等各种各样的资源.前端优化是复杂的,针对方方面面的资源都有不同的方式.那么,前端优化的目的是什么? 1. 从用户角度而 ...

  7. Laravel5.1 学习笔记1, 目录结构和命名空间(待修)

    自从用 Laravel4做了个小网站,使用了数据库ORM Eloquent, 就放下了一段时间,想不到这个与Asp.net MVC 有着异曲同工之妙的框架已经出了下个版本,而且还有不小的改动,因此不得 ...

  8. ViewPager循环滚动

    一.先写个适配器 public class MyPagerAdapter extends PagerAdapter { /** * 上下文 */ private Context context; /* ...

  9. ie8及其以下版本兼容性问题之placeholder实现

    1. 普通浏览器下修改placeholder颜色 因为每个浏览器的CSS选择器都有所差异,所以需要针对每个浏览器做单独的设定. 示例: input::-webkit-input-placeholder ...

  10. linux挂载ntfs格式的U盘

    1.需要安装一个ntfs-3G工具 工具包下载网站:http://www.tuxera.com/community/ntfs-3g-download/ 根据情况选择要下载的包. 2.上传到Linux服 ...