【UOJ139】【UER #4】被删除的黑白树
题意:
很久很久以前,有一棵树加入了 UOJ 群。
这天,在它讨论“一棵树应该怎么旋转”的时候一不小心被删除了,变成了被删除的树。
突然间,它突然发现它失去了颜色,变成了一棵纯白的树。这让它感觉很焦躁,于是它来拜托你给自己染上一些颜色。
我们可以把它描述成一棵n个节点的有根树(默认树的根为1号节点),所有非根的度数为1的节点被称为叶子节点。最开始所有的点都是白色的。
现在你需要选出一些节点并把这些节点染成黑色的。为了迎合树的审美,你的染色方案必须要满足所有叶子节点到根路径上的黑色节点个数相同。
你发现黑色节点个数越多,树就会越高兴,所以你想要知道在所有合法的染色方案中,黑色节点总个数最多是多少。
题解:
神题。(感觉UOJ Round的题全是神题)
$O(n^2)$的DP大家都会,但是跟正解并没有什么关系;
显然题目要求相当于使白色节点最少;
有几个结论:
1.如果一种合法方案中根节点到所有叶节点的路径上都经过白色节点,那么dfs一遍这棵树,在遇到白色节点时染黑并回溯,这样必定可以使得白色节点变少或不变且依然合法;
2.如果一种合法方案中根节点到深度最浅的叶节点的路径上经过白色节点,那么根节点到所有叶节点的路径上必定都经过白色节点;假定根节点深度为1,因为其他叶节点的深度不小于到最浅叶节点的深度,而根节点到其他叶节点路径上的黑节点数等于到最浅叶节点路径上的黑节点数,而小于他们的深度,因此根节点到其他叶节点的路径上都会经过至少一个白点;
综上,一种最优的合法方案必定满足根节点到最浅叶节点的路径上没有白点;
这样一种构造方法就是先把根节点到最浅叶节点的路径全部染黑,然后递归判断根节点的其他子树跟是否要染白再往下做即可;
简化到每个点,实际上一个点被染白当且仅当该节点子树中最浅叶节点的深度>整棵树的最浅叶节点深度+该节点到根节点路径上的白点个数;
预处理每个点子树中的最浅叶节点深度,再一次dfs判断即可,时间复杂度$O(n)$。
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define inf 2147483647
#define eps 1e-9
using namespace std;
typedef long long ll;
typedef double db;
struct edge{
int v,next;
}a[];
int n,u,v,ans=,tot=,du[],mid[],head[];
void add(int u,int v){
a[++tot].v=v;
a[tot].next=head[u];
head[u]=tot;
}
void dfs(int u,int fa,int dpt){
if(u!=&&du[u]==)mid[u]=dpt;
for(int tmp=head[u];tmp!=-;tmp=a[tmp].next){
int v=a[tmp].v;
if(v!=fa){
dfs(v,u,dpt+);
mid[u]=min(mid[u],mid[v]);
}
}
}
void _dfs(int u,int fa,int nwd){
if(nwd<mid[u]){
nwd++;
ans++;
}
for(int tmp=head[u];tmp!=-;tmp=a[tmp].next){
int v=a[tmp].v;
if(v!=fa){
_dfs(v,u,nwd);
}
}
}
int main(){
memset(head,-,sizeof(head));
memset(mid,0x7f,sizeof(mid));
memset(du,,sizeof(du));
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
du[u]++,du[v]++;
}
dfs(,,);
_dfs(,,mid[]);
printf("%d",n-ans);
return ;
}
【UOJ139】【UER #4】被删除的黑白树的更多相关文章
- 【uoj#139】[UER #4]被删除的黑白树 贪心
题目描述 给出一个 $n$ 个节点的树,$1$ 号点为根.现要将其中一些点染成黑色,使得每个叶子节点(不包括根节点)到根节点路径上的黑点数相同.求最多能够染多少个黑点. 题解 贪心 显然有结论:选择的 ...
- uoj #139. 【UER #4】被删除的黑白树 dfs序 贪心
#139. [UER #4]被删除的黑白树 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/139 Descript ...
- 【UOJ139】【UER #4】被删除的黑白树(贪心)
点此看题面 大致题意: 请你给一棵树黑白染色,使每一个叶结点到根节点的路径上黑节点个数相同. 贪心 显然,按照贪心的思想,我们要让叶结点到根节点的路径上黑节点的个数尽量大. 我们可以用\(Min_i\ ...
- uoj139 【UER #4】被删除的黑白树
题目 不难发现有一个暴力\(dp\) 设\(dp[x][l]\)表示\(x\)点子树内所有叶子节点到\(x\)的路径上都有\(l\)和黑点时最多能染多个黑点 转移就是 \[dp[x][l]=\max( ...
- 【BZOJ】3319: 黑白树
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...
- 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...
- [BZOJ 3319] 黑白树
3319: 黑白树 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 557 Solved: 194[Submit][Status][Discuss] ...
- CodeM美团点评编程大赛初赛B轮 黑白树【DFS深搜+暴力】
[编程题] 黑白树 时间限制:1秒 空间限制:32768K 一棵n个点的有根树,1号点为根,相邻的两个节点之间的距离为1.树上每个节点i对应一个值k[i].每个点都有一个颜色,初始的时候所有点都是白色 ...
- 【BZOJ3319】黑白树 并查集
[BZOJ3319]黑白树 Description 给定一棵树,边的颜色为黑或白,初始时全部为白色.维护两个操作:1.查询u到根路径上的第一条黑色边的标号.2.将u到v 路径上的所有边的颜色设为 ...
随机推荐
- find结合rm删除大量文件
版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明http://navarro.blogbus.com/logs/31502374.html 例:删除/home/raven下,包括子目录 ...
- luogu1775 古代人的难题 打表找规律
题目大意:给出一正整数k,求满足(x^2-x*y-y^2)^2=1且x,y∈[1,k]且x^2+y^2最大的正整数x,y. 既然x,y的范围给出来了,我们便有了暴力解法.因此,本题最适合打表找规律了! ...
- Xmind8破解激活
1.下载安装包: https://www.xmind.cn/download/ 进行安装 2.下载破解补丁: https://stormxing.oss-cn-beijing.aliyuncs.com ...
- hdoj--3635--Dragon Balls(并查集记录深度)
Dragon Balls Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- 【POJ 3744】 Scout YYF I
[题目链接] http://poj.org/problem?id=3744 [算法] 概率DP + 矩阵乘法 [代码] #include <algorithm> #include < ...
- Maven与IDEA结合
转自:https://blog.csdn.net/zzpzheng/article/details/49474671 1. 什么是 Maven,为什么要使用 Maven 而不是 Ant Maven简单 ...
- GStreamer基础教程02 - 基本概念
摘要 在 Gstreamer基础教程01 - Hello World中,我们介绍了如何快速的通过一个字符串创建一个简单的pipeline.为了能够更好的控制pipline中的element,我们需要单 ...
- Solr.NET快速入门(八)【多核多实例,映射验证】
多核/多实例 本页介绍如何配置SolrNet访问(读/写)多个Solr内核或实例. 它假定您知道Solr内核是什么,如何在SolrNet外部配置和使用它们. 此页面不涵盖CoreAdminHandle ...
- Java基础之多线程简述
首先,要辨析进程与线程的概念: 进程是程序执行的过程,它持有资源和线程,相对于程序本身而言具有动态性. 线程是系统中最小的执行单元,同一个进程中可能有多个线程,它们共享该进程持有的资源.线程的通信也称 ...
- hdu 2768 Cat vs. Dog 最大独立集 巧妙的建图
题目分析: 一个人要不是爱狗讨厌猫的人,要不就是爱猫讨厌狗的人.一个人喜欢的动物如果离开,那么他也将离开.问最多留下多少人. 思路: 爱猫和爱狗的人是两个独立的集合.若两个人喜欢和讨厌的动物是一样的, ...