题目描述

有一个ab的整数组成的矩阵,现请你从中找出一个nn的正方形区域,使得该区域所有数中的最大值和最小值的差最小。

输入输出格式

输入格式:

第一行为3个整数,分别表示a,b,n的值

第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。

输出格式:

仅一个整数,为ab矩阵中所有“nn正方形区域中的最大整数和最小整数的差值”的最小值。

输入输出样例

输入样例#1:

5 4 2

1 2 5 6

0 17 16 0

16 17 2 1

2 10 2 1

1 2 2 2

输出样例#1:

1

说明

问题规模

(1)矩阵中的所有数都不超过1,000,000,000

(2)20%的数据2<=a,b<=100,n<=a,n<=b,n<=10

(3)100%的数据2<=a,b<=1000,n<=a,n<=b,n<=100

题解

反正我一看到题就想着用ST表。。

不过后来发现还有一种更优秀的做法,那便是利用单调队列,求出一个满足一维上的最值数组

之后这个最值数组上再次利用单调队列求出二维的最值数组,便可以更优秀的时间复杂度过掉这道题(而且代码也不长)

code:(2dST表) 很好写

//By Menteur_Hxy
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
using namespace std; int rd() {
int x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-') f=-f; c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} const int INF=0x7fffffff;
const int MAX=1050;
int a,b,n,m;
int ma[MAX][MAX][12],mi[MAX][MAX][12]; inline int min(int a,int b) {
if(a<b) return a;
return b;
} inline int max(int a,int b) {
if(a>b) return a;
return b;
} void init() {
F(k,1,11) F(i,1,a-(1<<k)+1) F(j,1,b-(1<<k)+1)
mi[i][j][k]=min(min(mi[i][j][k-1],mi[i+(1<<(k-1))][j+(1<<(k-1))][k-1]),
min(mi[i+(1<<(k-1))][j][k-1],mi[i][j+(1<<(k-1))][k-1])),
ma[i][j][k]=max(max(ma[i][j][k-1],ma[i+(1<<(k-1))][j+(1<<(k-1))][k-1]),
max(ma[i+(1<<(k-1))][j][k-1],ma[i][j+(1<<(k-1))][k-1]));
} inline int query(int i,int j) {
int maxn=-INF,minn=INF;
minn=min(min(mi[i][j][m],mi[i+n-(1<<m)][j+n-(1<<m)][m]),
min(mi[i+n-(1<<m)][j][m],mi[i][j+n-(1<<m)][m]));
maxn=max(max(ma[i][j][m],ma[i+n-(1<<m)][j+n-(1<<m)][m]),
max(ma[i+n-(1<<m)][j][m],ma[i][j+n-(1<<m)][m]));
return maxn-minn;
} int main() {
a=rd(),b=rd(),n=rd();
F(i,1,a) F(j,1,b) ma[i][j][0]=mi[i][j][0]=rd();
init(); m=log(n)/log(2); int ans=INF;
F(i,1,a-n+1) F(j,1,b-n+1) ans=min(ans,query(i,j));
printf("%d",ans);
return 0;
}

code:(单调队列)

//By Menteur_Hxy
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
using namespace std;
int rd() {
int x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-') f=-f; c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
}
const int N=1050,INF=0x7fffffff;
int n,m,k,ans=INF,h,H,T,t;
int da[N][N],X[N][N],x[N][N],Y[N][N],y[N][N],Q[N<<1],q[N<<1];
int main() {
n=rd(),m=rd(),k=rd();
F(i,1,n) F(j,1,m) da[i][j]=rd();
F(i,1,n) { H=T=h=t=Q[1]=q[1]=1;
F(j,2,m) {
while(T>=H and da[i][j]>=da[i][Q[T]]) T--;
while(t>=h and da[i][j]<=da[i][q[t]]) t--;
t++,T++; q[t]=Q[T]=j;
while(j-Q[H]>=k) H++;
while(j-q[h]>=k) h++;
if(j>=k) X[i][j-k+1]=da[i][Q[H]],x[i][j-k+1]=da[i][q[h]];
}
}
F(i,1,m-k+1) { H=T=t=h=Q[1]=q[1]=1;
F(j,2,n) {
while(T>=H and X[j][i]>=X[Q[T]][i]) T--;
while(t>=h and x[j][i]<=x[q[t]][i]) t--;
t++,T++; q[t]=Q[T]=j;
while(j-Q[H]>=k) H++;
while(j-q[h]>=k) h++;
if(j>=k) Y[j-k+1][i]=X[Q[H]][i],y[j-k+1][i]=x[q[h]][i],
ans=min(ans,Y[j-k+1][i]-y[j-k+1][i]);
}
}
return printf("%d",ans),0;
}

[luogu2216 HAOI2007] 理想的正方形 (2dST表 or 单调队列)的更多相关文章

  1. [bzoj1047][HAOI2007]理想的正方形_动态规划_单调队列

    理想的正方形 bzoj-1047 HAOI-2007 题目大意:有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 注释:$2\le a, ...

  2. [luoguP2216] [HAOI2007]理想的正方形(二维单调队列)

    传送门 1.先弄个单调队列求出每一行的区间为n的最大值最小值. 2.然后再搞个单调队列求1所求出的结果的区间为n的最大值最小值 3.最后扫一遍就行 懒得画图,自己体会吧. ——代码 #include ...

  3. [HAOI2007]理想的正方形 st表 || 单调队列

    ~~~题面~~~ 题解: 因为数据范围不大,而且题目要求的是正方形,所以这道题有2种解法. 1,st表. 这种解法暴力好写好理解,但是较慢.我们设st[i][j][k]表示以(i, j)为左端点,向下 ...

  4. luogu2216 [HAOI2007]理想的正方形

    先对于每一行中长度为 n 的列用单调队列搞出它们的最小/大值,再将这些长度为 n 的列想象成点再对行跑一遍 #include <iostream> #include <cstring ...

  5. [Bzoj1047][HAOI2007]理想的正方形(ST表)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 题目虽然有一个n的限制,但求二维区间最值首先想到的还是RMQ,但是如果按照往常RM ...

  6. 【BZOJ1047】[HAOI2007]理想的正方形 (倍增ST表)

    [HAOI2007]理想的正方形 题目描述 有一个\(a*b\)的整数组成的矩阵,现请你从中找出一个\(n*n\)的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: ...

  7. 【BZOJ1047】[HAOI2007]理想的正方形

    [BZOJ1047][HAOI2007]理想的正方形 题面 bzoj 洛谷 题解 二维\(st\)表,代码是以前的 #include<iostream> #include<cstdi ...

  8. [Luogu 2216] [HAOI2007]理想的正方形

    [Luogu 2216] [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输 ...

  9. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

随机推荐

  1. Sublime Text 3常用插件—Emmet

    原文链接:http://www.cnblogs.com/easy-blue/p/6617852.html 摘要: 安装请看上一篇Sublime Text—安装,和sublime自带快捷键一起用,写ht ...

  2. RubyMine生成reader/writer方法

    RubyMine生成reader/writer方法 在非类的ruby文件中,Alt+Insert会出现新建文件的选项: 在ruby文件的类中,Alt+Insert会出现get/set方法生成提示和重构 ...

  3. linux 线程切换效率与进程切换效率相差究竟有多大?

    Author:DriverMonkey Mail:bookworepeng@Hotmail.com Phone:13410905075 QQ:196568501 Are Linux threads t ...

  4. swift初始化

    swift初始化 class INIT: NSObject { // 一个结构体的初始化 // 1.存储属性的初始化 struct Fahrenheit { var temperature :Doub ...

  5. 邮箱smtpserver及port收集

    网易   163邮箱 POP3:pop.126.com SMTP:smtp.126.com SMTPport号:25   126邮箱 POP3:pop.126.com SMTP:smtp.126.co ...

  6. 怎样又一次编译linux内核

    linux作为自由软件.在广大爱好者的支持下,内核版本号不断更新. 新的内核修订了就得内核的bug,并添加了很多新的特性.假设用户须要使用这些新的特性或者依据自己的系统量身定做一个更高效或更稳定的内核 ...

  7. shell学习五十天----查看进程ps命令

    进程列表 列出进程中最重要的命令便是进程状态命令:ps. ps命令是进程状态(Process Status)的缩写.ps命令用来列出系统中当前执行的那些进程.ps命令列出的是当前那些进程的快照,就是执 ...

  8. web请求乱码问题总结

    问题1:springmvc通过@ResponseBody向页面返回值(包括汉字)时,乱码 解决方案: springmvc3.2之后可以声明注解驱动器(不知道是不是这么翻译)的时候的控制编码的转换,结果 ...

  9. new一个接口

    首先我们先看看接口的定义: 接口(英文:Interface),在JAVA编程语言中是一个抽象类型,是抽象方法的集合,接口通常以interface来声明.一个类通过继承接口的方式,从而来继承接口的抽象方 ...

  10. sublime的常用插件

    作为一个开发者你不可能没听说过SublimeText.不过你没听说过也没关系,下面让你明白. SublimeText是一款非常精巧的文本编辑器,适合编写代码.做笔记.写文章.它用户界面十分整洁,功能非 ...