题目大意:给你n个1和m个0,你要用这些数字组成一个长度为n+m的串,对于任意一个位置k,要保证前k个数字中1的数量大于等于0的数量,求所有合法的串的数量

答案转化为所有方案数-不合法方案数

所有方案数显然是

现在比较易懂的解法是转化进坐标系

从(0,0)开始,填1视为向右上↗走,填0视为向右下↘走,如果路径经过了y=-1这条直线,说明不合法

把一个经过y=-1的路径的左半部分(即在路径和y=-1交点之前的那部分路径)关于y=-1翻转

因为是从(0,0)出发,现在变成了从(0,-2)出发,求方案数,显然是

所以最终答案是

求逆元即可

 #include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 2000100
#define mod 20100403
#define ll long long
using namespace std; int n,m;
ll mu[N],inv[N]; void get_mu()
{
mu[]=mu[]=inv[]=inv[]=;
for(ll i=;i<=n+m;i++)
mu[i]=mu[i-]*i%mod,
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
for(ll i=;i<=n+m;i++)
inv[i]=inv[i]*inv[i-]%mod;
} int main()
{
scanf("%d%d",&n,&m);
get_mu();
ll ans1=mu[n+m]*inv[n]%mod*inv[m]%mod;
ll ans2=mu[n+m]*inv[n+]%mod*inv[m-]%mod;
printf("%lld\n",(ans1-ans2+mod)%mod);
return ;
}

BZOJ 1856 [SCOI2010]生成字符串 (组合数)的更多相关文章

  1. [SCOI2010]生成字符串 题解(卡特兰数的扩展)

    [SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...

  2. P1641 [SCOI2010]生成字符串

    P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...

  3. Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1194  Solved: 651[Submit][Status][ ...

  4. BZOJ 1856: [Scoi2010]字符串( 组合数 )

    求(0,0)->(n,m)且在直线y=x下方(可以在y=x上)的方案数...同 http://www.cnblogs.com/JSZX11556/p/4908648.html --------- ...

  5. BZOJ 1856: [Scoi2010]字符串 [Catalan数]

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1418  Solved: 790[Submit][Status][ ...

  6. bzoj 1856: [Scoi2010]字符串 卡特兰数

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1458  Solved: 814[Submit][Status][ ...

  7. BZOJ1856 [SCOI2010]生成字符串 【组合数】

    题目 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求 ...

  8. [SCOI2010]生成字符串

    题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...

  9. 卡特兰数 洛谷P1641 [SCOI2010]生成字符串

    卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...

随机推荐

  1. 洛谷P1425 小鱼的游泳时间

    题目描述 伦敦奥运会要到了,小鱼在拼命练习游泳准备参加游泳比赛,可怜的小鱼并不知道鱼类是不能参加人类的奥运会的.这一天,小鱼给自己的游泳时间做了精确的计时(本题中的计时都按24小时制计算),它发现自己 ...

  2. BZOJ 1197 [HNOI2006]花仙子的魔法 (数学题)

    题面:洛谷传送门 BZOJ传送门 非常有意思的一道数学题,浓浓的$CF$风,然而我并没有想出来.. 我们想把一个$n$维空间用$n$维球分成尽可能多的块 而新增加一个$n$维球时,肯定要尽可能多地切割 ...

  3. [poj 3666] Making the Grade (离散化 线性dp)

    今天的第一题(/ω\)! Description A straight dirt road connects two fields on FJ's farm, but it changes eleva ...

  4. 使用 Laravel 5.5+ 更好的来实现 404 响应

    译文首发于 使用 Laravel 5.5+ 更好的来实现 404 响应,转载请注明出处! Laravel 5.5.10 封装了两个有用的路由器方法,可以帮助我们为用户提供更好的 404 页面.现在,当 ...

  5. TNS-12557: TNS:protocol adapter not loadable TNS-12560: TNS:protocol adapter error

    Description: Oracle 10.2 on hpux 11.23 PA. When i try to start listener i go the next errors: Error ...

  6. 基本socket api

    socket函数,为了执行网络I/O,一个进程必须做的第一件事就是调用socket函数,并且指定通信协议类型. #include<sys/socket.h> int socket (int ...

  7. codecombat之KithGard地牢19-37关代码分享

    codecombat中国游戏网址:http://www.codecombat.cn/ 全部代码为javascript代码分享 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 19 ...

  8. MongoDB初探系列之四:MongoDB与Java共舞

    因为版本号不同,可能API也有所不同.本次学习用的是3.0版本号. 1.使用的mongodb的jdbc驱动版本号为:mongo-java-driver-3.0.0.jar 2.本节仅仅是简介JDBC操 ...

  9. hdu 4603 Color the Tree

    这道题细节真的非常多 首先能够想到a和b的最优策略一定是沿着a和b在树上的链走,走到某个点停止,然后再依次占据和这个点邻接的边 所以,解决这道题的过程例如以下: 预处理阶段: step 1:取随意一个 ...

  10. Debian以下的ntp服务(ntpdate)的安装

    /*********************************************************************  * Author  : Samson  * Date   ...