题目描述

物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是—件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。

输入输出格式

输入格式:

第一行是四个整数n(l≤n≤100)、m(l≤m≤20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本,e表示航线条数。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P(1<P<m),a,b(1≤a≤b≤n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。

输出格式:

包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

输入输出样例

输入样例#1:

5 5 10 8

1 2 1

1 3 3

1 4 2

2 3 2

2 4 4

3 4 1

3 5 2

4 5 2

4

2 2 3

3 1 1

3 3 3

4 4 5

输出样例#1:

32

说明

【样例输入说明】

上图依次表示第1至第5天的情况,阴影表示不可用的码头。

【样例输出说明】

前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)3+(3+2)2+10=32。

_NOI导刊2010提高(01)

最短路的应用好题。。

先把每段时间的最短路求出来然后一个简单dp就好了

code:

//By Menteur_Hxy
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <map>
#include <vector>
#include <queue>
#include <set>
#include <ctime>
#define M(a,b) memset(a,(b),sizeof(a))
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define LL long long
using namespace std; inline LL rd() {
LL x=0,fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
} inline void out(LL x){
int a[25],wei=0;
if(x<0) putchar('-'),x=-x;
for(;x;x/=10) a[++wei]=x%10;
if(wei==0){ puts("0"); return;}
for(int j=wei;j>=1;--j) putchar('0'+a[j]);
putchar('\n');
} const int N=110;
const int INF=0x3f3f3f3f;
int n,m,k,e,d,cnt;
int v[N][N],dis[N],ex[N],head[N],f[N][N],vis[N],exi[N];
LL dp[N]; struct edges{
int next,to,w;
}edg[N*N*2]; void add(int a,int b,int c) {
edg[++cnt].next=head[a];
edg[cnt].to=b;
edg[cnt].w=c;
head[a]=cnt;
} queue <int> q;
int spfa(int a,int b) {
M(vis,0);
M(dis,0x3f);
F(i,1,m) exi[i]=1;
F(i,1,m) F(j,a,b) if(v[i][j]) exi[i]=0;
q.push(1);vis[1]=1;dis[1]=0;
while(!q.empty()) {
int u=q.front(); q.pop(); vis[u]=0;
for(int i=head[u];i;i=edg[i].next) {
int t=edg[i].to;
if(!exi[t]) continue;
if(dis[u]+edg[i].w<dis[t]) {
dis[t]=dis[u]+edg[i].w;
if(!vis[t]) q.push(t),vis[t]=1;
}
}
}
return dis[m];
} int main() {
n=rd(),m=rd(),k=rd(),e=rd();
F(i,1,e) {
int a=rd(),b=rd(),c=rd();
add(a,b,c);
add(b,a,c);
}
d=rd();
F(i,1,d) {
int p=rd(),x=rd(),y=rd();
for(x;x<=y;x++) v[p][x]=1;
}
F(i,1,n) F(j,1,n) f[i][j]=spfa(i,j);
F(i,1,n) {
dp[i]=(LL)f[1][i]*i;
F(j,1,i-1)
dp[i]=min(dp[i],dp[j]+k+(LL)f[j+1][i]*(i-j));
}
out(dp[n]);
return 0;
}

[luogu1772 ZJOI2006] 物流运输 (最短路 线性dp)的更多相关文章

  1. 「bzoj1003」「ZJOI2006」物流运输 最短路+区间dp

    「bzoj1003」「ZJOI2006」物流运输---------------------------------------------------------------------------- ...

  2. [bzoj1003][ZJOI2006][物流运输] (最短路+dp)

    Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...

  3. 1003: [ZJOI2006]物流运输 最短路+dp

    https://www.lydsy.com/JudgeOnline/problem.php?id=1003 数据范围很小,怎么瞎搞都行,n方dp,然后跑出最短路暴力转移,需要注意的是不能使用的可能有多 ...

  4. P1772 [ZJOI2006]物流运输 最短路+DP

    思路:最短路+DP 提交:1次 题解: $f[i]$表示到第$i$天的最小代价,我们可以预先处理出$i,j$两天之间(包括$i,j$)都可通行的最短路的代价记做$s[i][j]$,然后有$f[i]=m ...

  5. 【BZOJ】1003: [ZJOI2006]物流运输trans(SPFA+DP)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1003 这题一开始看是不会的额,,,还是看题解了..一开始我觉得不能用最短路啥的,,看了题解发现这是d ...

  6. [ZJOI2006]物流运输 最短路 动态规划

    Code: 定义状态 $dp[i]$ 为前 $i$ 天的最小代价. 状态转移为:$dp[i]=min(dp[i],dp[j]+spfa(j+1,i)$ 这里 $spfa(i,j)$ 是指 $(i,j) ...

  7. 【洛谷 P1772】 [ZJOI2006]物流运输(Spfa,dp)

    题目链接 \(g[i][j]\)表示不走在\(i\text{~}j\)时间段中会关闭的港口(哪怕只关\(1\)天)从\(1\)到\(m\)的最短路. \(f[i]\)表示前\(i\)天的最小花费.于是 ...

  8. BZOJ 1003: [ZJOI2006]物流运输trans(最短路+dp)

    1A,爽! cost[i][j]表示从第i天到第j天不改路线所需的最小花费,这个可以用最短路预处理出.然后dp(i)=cost[j][i]+dp(j-1)+c. c为该路线的花费. --------- ...

  9. BZOJ_1003_[ZJOI2006]物流运输_最短路+dp

    BZOJ_1003_[ZJOI2006]物流运输_最短路+dp 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1003 分析: 这种一段一段的显 ...

随机推荐

  1. linux双网卡配置

    一.VM虚拟机添加一个网络适配器. 选择自己需要的模式类型 二.启动虚拟机,配置网卡 按原先配置网卡的方式配置完(ip地址及默认网关还有网卡名不能跟原先的一样) 重启所有网卡(service netw ...

  2. OSI层次介绍

    1.应用层:为应用软件提供接口,使应用程序能够使用网络服务. 2.表示层:①数据的解码和编码,②数据的加密和解密,③数据的压缩和解压缩. 3.会话层:建立.维护.管理应用程序之间的会话. 功能:对话控 ...

  3. Supervisor 从入门到放弃

    前言 Supervisor是一个客户端/服务器系统,允许其用户在类UNIX操作系统上控制许多进程.(官方解释) 简单点来讲,就是一个监控脚本运行的工具,不过他可以统一化管理,laravel的队列文档上 ...

  4. RobotFrameWork+APPIUM实现对安卓APK的自动化测试----第二篇【原理】

    http://blog.csdn.net/deadgrape/article/details/50574459 接着上一篇,我们开始聊聊APPIUM的框架和运行模式.废话不多说直接上图. 1.首先自动 ...

  5. auto-boxing, uboxing,以及缓存问题

    package chengbaoDemo; public class Test02 {    public static void main(String[] args) {        Integ ...

  6. ibatis的批处理

    (1)spring模式:尽管spring已经配置了事务,但以下代码中还是要设置事务,不然batch不会起作用;另外这里虽然设了一下事务处理,但对全局事务并不会造成影响;注:不启用事务将建立多次连接,这 ...

  7. Linux下ffmpeg的wav与amr相互转换

    转载:http://blog.csdn.net/sanshipianyezi/article/details/78742621 转载:http://blog.csdn.net/szfhy/articl ...

  8. 漫说好管理vs.坏管理

    天地会珠海分舵注:本文英文版来自Medium今日热点头条.漫画简单明了,全文差点儿没有多余的语言去装饰.两天内获得两千三百多个推荐,且读者的反馈也相当的热烈.中文版由天地会珠海分舵编译后分享给大家. ...

  9. 使用Dropzone上传图片及回显演示样例

    一.图片上传所涉及到的问题 1.HTML页面中引入这么一段代码 <div class="row"> <div class="col-md-12" ...

  10. [HTML 5] Atomic Relevant Busy

    Together 'aria-live', we can use 'aria-atomic', 'aria-relevant' and 'aria-busy' to give more informa ...