题目描述

物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是—件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。

输入输出格式

输入格式:

第一行是四个整数n(l≤n≤100)、m(l≤m≤20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本,e表示航线条数。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P(1<P<m),a,b(1≤a≤b≤n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。

输出格式:

包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

输入输出样例

输入样例#1:

5 5 10 8

1 2 1

1 3 3

1 4 2

2 3 2

2 4 4

3 4 1

3 5 2

4 5 2

4

2 2 3

3 1 1

3 3 3

4 4 5

输出样例#1:

32

说明

【样例输入说明】

上图依次表示第1至第5天的情况,阴影表示不可用的码头。

【样例输出说明】

前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)3+(3+2)2+10=32。

_NOI导刊2010提高(01)

最短路的应用好题。。

先把每段时间的最短路求出来然后一个简单dp就好了

code:

//By Menteur_Hxy
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <map>
#include <vector>
#include <queue>
#include <set>
#include <ctime>
#define M(a,b) memset(a,(b),sizeof(a))
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define LL long long
using namespace std; inline LL rd() {
LL x=0,fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
} inline void out(LL x){
int a[25],wei=0;
if(x<0) putchar('-'),x=-x;
for(;x;x/=10) a[++wei]=x%10;
if(wei==0){ puts("0"); return;}
for(int j=wei;j>=1;--j) putchar('0'+a[j]);
putchar('\n');
} const int N=110;
const int INF=0x3f3f3f3f;
int n,m,k,e,d,cnt;
int v[N][N],dis[N],ex[N],head[N],f[N][N],vis[N],exi[N];
LL dp[N]; struct edges{
int next,to,w;
}edg[N*N*2]; void add(int a,int b,int c) {
edg[++cnt].next=head[a];
edg[cnt].to=b;
edg[cnt].w=c;
head[a]=cnt;
} queue <int> q;
int spfa(int a,int b) {
M(vis,0);
M(dis,0x3f);
F(i,1,m) exi[i]=1;
F(i,1,m) F(j,a,b) if(v[i][j]) exi[i]=0;
q.push(1);vis[1]=1;dis[1]=0;
while(!q.empty()) {
int u=q.front(); q.pop(); vis[u]=0;
for(int i=head[u];i;i=edg[i].next) {
int t=edg[i].to;
if(!exi[t]) continue;
if(dis[u]+edg[i].w<dis[t]) {
dis[t]=dis[u]+edg[i].w;
if(!vis[t]) q.push(t),vis[t]=1;
}
}
}
return dis[m];
} int main() {
n=rd(),m=rd(),k=rd(),e=rd();
F(i,1,e) {
int a=rd(),b=rd(),c=rd();
add(a,b,c);
add(b,a,c);
}
d=rd();
F(i,1,d) {
int p=rd(),x=rd(),y=rd();
for(x;x<=y;x++) v[p][x]=1;
}
F(i,1,n) F(j,1,n) f[i][j]=spfa(i,j);
F(i,1,n) {
dp[i]=(LL)f[1][i]*i;
F(j,1,i-1)
dp[i]=min(dp[i],dp[j]+k+(LL)f[j+1][i]*(i-j));
}
out(dp[n]);
return 0;
}

[luogu1772 ZJOI2006] 物流运输 (最短路 线性dp)的更多相关文章

  1. 「bzoj1003」「ZJOI2006」物流运输 最短路+区间dp

    「bzoj1003」「ZJOI2006」物流运输---------------------------------------------------------------------------- ...

  2. [bzoj1003][ZJOI2006][物流运输] (最短路+dp)

    Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...

  3. 1003: [ZJOI2006]物流运输 最短路+dp

    https://www.lydsy.com/JudgeOnline/problem.php?id=1003 数据范围很小,怎么瞎搞都行,n方dp,然后跑出最短路暴力转移,需要注意的是不能使用的可能有多 ...

  4. P1772 [ZJOI2006]物流运输 最短路+DP

    思路:最短路+DP 提交:1次 题解: $f[i]$表示到第$i$天的最小代价,我们可以预先处理出$i,j$两天之间(包括$i,j$)都可通行的最短路的代价记做$s[i][j]$,然后有$f[i]=m ...

  5. 【BZOJ】1003: [ZJOI2006]物流运输trans(SPFA+DP)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1003 这题一开始看是不会的额,,,还是看题解了..一开始我觉得不能用最短路啥的,,看了题解发现这是d ...

  6. [ZJOI2006]物流运输 最短路 动态规划

    Code: 定义状态 $dp[i]$ 为前 $i$ 天的最小代价. 状态转移为:$dp[i]=min(dp[i],dp[j]+spfa(j+1,i)$ 这里 $spfa(i,j)$ 是指 $(i,j) ...

  7. 【洛谷 P1772】 [ZJOI2006]物流运输(Spfa,dp)

    题目链接 \(g[i][j]\)表示不走在\(i\text{~}j\)时间段中会关闭的港口(哪怕只关\(1\)天)从\(1\)到\(m\)的最短路. \(f[i]\)表示前\(i\)天的最小花费.于是 ...

  8. BZOJ 1003: [ZJOI2006]物流运输trans(最短路+dp)

    1A,爽! cost[i][j]表示从第i天到第j天不改路线所需的最小花费,这个可以用最短路预处理出.然后dp(i)=cost[j][i]+dp(j-1)+c. c为该路线的花费. --------- ...

  9. BZOJ_1003_[ZJOI2006]物流运输_最短路+dp

    BZOJ_1003_[ZJOI2006]物流运输_最短路+dp 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1003 分析: 这种一段一段的显 ...

随机推荐

  1. parted分区流程操作

    parted不同于fdisk(<2T)它比fdiskf更加灵活,fdisk需保持后才能生效,而parted是分区后直接生效! 磁盘分区步骤: 1.parted /dev/sdb #进入磁盘分区 ...

  2. Untiy中的数据平滑处理

    本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/50680237 作者:car ...

  3. nodejs-配置vs code的插件

    在windows上安装好npm后,再在终端里使用npm安装express,再安装express-generator  进入express的目录, 在终端中执行 npm install 启动expres ...

  4. BA-给排水-供水系统自动控制(转载)

    浙江省建筑设计研究院划 杨绍胤 杨庆 摘 要:探讨供水系统变流量和恒压自动控制和设计方法.关键词: 供水系统 自动控制 传统给水系统常在屋顶设置高位水箱.水从地下水箱用水泵打到高位水箱.从高位水箱通过 ...

  5. EF Code First:实体映射,数据迁移,重构

    经过EF的<第一篇>,我们已经把数据访问层基本搭建起来了,但并没有涉及实体关系.实体关系对于一个数据库系统来说至关重要,而且EF的各个实体之间的联系,实体之间的协作,联合查询等也都依赖于这 ...

  6. Qt Installer Framework的学习(三)

    Qt Installer Framework的学习(三) Qt Installer Framework的样例中.通常是这种:config目录一般放了一个config.xml文件,包括的是安装配置xml ...

  7. linux中设置TAB键的宽度

    对于编程的人员来说,常常须要排版代码,这时候就须要TAB键,但TAB键的宽度太大,非常有可能代码太长,延伸到下一行,这个时候你就须要设置TAB键的宽度了. linux下设置TAB键的宽度,做法例如以下 ...

  8. NEU 1664 传送(最短路基础 堆优化Dijkstra)

    题目描述 小A最近喜欢上一款游戏:游戏把地图分了一些区域,这些区域可能会重叠,也可能不会. 游戏中有一项传送技能,改传送技能只能将在同一区域的两个地方使用.小A可以利用区域中重叠部分来实现从某一区域到 ...

  9. C#对 Json的序列化和反序列化时出现“k_BackingField”

    在C#2.0的项目中,以前经常使用Json.NET实现序列化和反序列化.后来从c#3.0中开始使用新增的DataContractJsonSerializer进行json相关的操作.微软提供的原生类库使 ...

  10. Redis运维时需要注意的参数

    1: 内存 Memory used_memory:859192 数据结构的空间 used_memory_rss:7634944 实占空间 mem_fragmentation_ratio:8.89 前2 ...