//============================================================================
// Name : POJ.cpp
// Author :
// Version :
// Copyright : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
/*
* 使用优先队列优化Dijkstra算法
* 复杂度O(ElogE)
* 注意对vector<Edge>E[MAXN]进行初始化后加边
*/
const int INF=0x3f3f3f3f;
const int MAXN=30010;
struct qnode
{
int v;
int c;
qnode(int _v=0,int _c=0):v(_v),c(_c){}
bool operator <(const qnode &r)const
{
return c>r.c;
}
};
struct Edge
{
int v,cost;
int next;
};
Edge edge[200000];
int tol;
int head[MAXN];
bool vis[MAXN];
int dist[MAXN];
void Dijkstra(int n,int start)//点的编号从1开始
{
memset(vis,false,sizeof(vis));
for(int i=1;i<=n;i++)dist[i]=INF;
priority_queue<qnode>que;
while(!que.empty())que.pop();
dist[start]=0;
que.push(qnode(start,0));
qnode tmp;
while(!que.empty())
{
tmp=que.top();
que.pop();
int u=tmp.v;
if(vis[u])continue;
vis[u]=true;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
int cost=edge[i].cost;
if(!vis[v]&&dist[v]>dist[u]+cost)
{
dist[v]=dist[u]+cost;
que.push(qnode(v,dist[v]));
}
}
}
}
void addedge(int u,int v,int w)
{
edge[tol].v=v;
edge[tol].cost=w;
edge[tol].next=head[u];
head[u]=tol++;
}

int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
int n,m;
while(scanf("%d%d",&n,&m)==2)
{
tol=0;
memset(head,-1,sizeof(head));
int A,B,C;
while(m--)
{
scanf("%d%d%d",&A,&B,&C);
addedge(A,B,C);
}
Dijkstra(n,1);
printf("%d\n",dist[n]);
}
return 0;
}

数组优化 Dijkstra 最短路的更多相关文章

  1. 循环队列+堆优化dijkstra最短路 BZOJ 4152: [AMPPZ2014]The Captain

    循环队列基础知识 1.循环队列需要几个参数来确定 循环队列需要2个参数,front和rear 2.循环队列各个参数的含义 (1)队列初始化时,front和rear值都为零: (2)当队列不为空时,fr ...

  2. HDU 2544 - 最短路 - [堆优化dijkstra][最短路模板题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 Time Limit: 5000/1000 MS (Java/Others) Memory Li ...

  3. 堆优化Dijkstra计算最短路+路径计数

    今天考试的时候遇到了一道题需要路径计数,然而蒟蒻从来没有做过,所以在考场上真的一脸懵逼.然后出题人NaVi_Awson说明天考试还会卡SPFA,吓得我赶紧又来学一波堆优化的Dijkstra(之前只会S ...

  4. PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS

    PAT 1030 最短路最小边权 堆优化dijkstra+DFS 1030 Travel Plan (30 分) A traveler's map gives the distances betwee ...

  5. BZOJ 3040 最短路 (堆优化dijkstra)

    这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为 ...

  6. dijkstra(最短路)和Prim(最小生成树)下的堆优化

    dijkstra(最短路)和Prim(最小生成树)下的堆优化 最小堆: down(i)[向下调整]:从第k层的点i开始向下操作,第k层的点与第k+1层的点(如果有)进行值大小的判断,如果父节点的值大于 ...

  7. POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...

  8. 【堆优化Dijkstra+字典序最短路方案】HDU1385-Minimum Transport Cost

    [题目大意] 给出邻接矩阵以及到达各个点需要付出的代价(起点和终点没有代价),求出从给定起点到终点的最短路,并输出字典序最小的方案. [思路] 在堆优化Dijkstra中,用pre记录前驱.如果新方案 ...

  9. 【BZOJ】BZOJ3040 最短路 线段树优化Dijkstra

    题目描述 N个点,M条边的有向图,求点1到点N的最短路(保证存在). 1<=N<=1000000,1<=M<=10000000 输入格式 第一行两个整数N.M,表示点数和边数. ...

随机推荐

  1. Kubernetes 集群中使用 Helm 搭建 Spinnaker

    在我们部署Spinnaker之前,我们需要一个YAML格式的配置文件,它会包含了一些配置信息.可以从Spinnaker Helm Chart repository[2]获得这个文件. $curl -L ...

  2. Redis学习和应用记录(2)--常用数据类型及命令

    这一节主要介绍Redis支持的数据结构及常用命令. 数据类型 Redis支持多种数据类型的存储,包括字符,列表,集合,有续集合,哈希表,bit数组,超级日志等.下面分别介绍: strings:存储普通 ...

  3. 【学习笔记】线段树—扫描线补充 (IC_QQQ)

    [学习笔记]线段树-扫描线补充 (IC_QQQ) (感谢 \(IC\)_\(QQQ\) 大佬授以本内容的著作权.此人超然于世外,仅有 \(Luogu\) 账号 尚可膜拜) [学习笔记]线段树详解(全) ...

  4. 【BZOJ2595_洛谷4294】[WC2008]游览计划(斯坦纳树_状压DP)

    上个月写的题qwq--突然想写篇博客 题目: 洛谷4294 分析: 斯坦纳树模板题. 简单来说,斯坦纳树问题就是给定一张有边权(或点权)的无向图,要求选若干条边使图中一些选定的点连通(可以经过其他点) ...

  5. Js打开QQ聊天对话窗口

    function openQQ() { var qq = $(this).attr('data-qq');//获取qq号 window.open('http://wpa.qq.com/msgrd?v= ...

  6. 简单的KKL诊断线~~~自己在家都可以制作obd诊断接口了 ~~

    简单的KKL诊断线~~~自己在家都可以制作~~ 适合bmw 07年以前的车型,因为新的车型使用D-can作为诊断接口,所以不能再使用kkl诊断接口不过SB开头的宝马3系还是可以使用的 更多内容欢迎查看 ...

  7. DeltaFish 小组成员及个人博客地址

    艾寅中  http://www.cnblogs.com/aiyz 陈志锴  http://www.cnblogs.com/chenzhikai 李   鑫  http://www.cnblogs.co ...

  8. (转)分布式文件存储FastDFS(二)FastDFS安装

    http://blog.csdn.net/xingjiarong/article/details/50559761 在前面的一篇中,我们分析了FastDFS的架构,知道了FastDFS是由客户端,跟踪 ...

  9. ats 与 https

    一些证书相关的描述:   https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKe ...

  10. Makefile精髓篇【转】

    什么是makefile?或许非常多Winodws的程序猿都不知道这个东西,由于那些Windows的IDE都为你做了这个工作,但我觉得要作一个好的和professional的程序猿,makefile还是 ...