F - Many Moves
F - Many Moves
Time limit : 2sec / Memory limit : 256MB
Score : 900 points
Problem Statement
There are N squares in a row. The squares are numbered 1,2,…,N from left to right.
You have two pieces, initially placed on square A and B, respectively. You will be asked to process Q queries of the following kind, in the order received:
- Given an integer xi, move one of the two pieces of your choice to square xi.
Here, it takes you one second to move a piece one square. That is, the time it takes to move a piece from square X to Y is |X−Y| seconds.
Your objective is to process all the queries in the shortest possible time.
You may only move the pieces in response to queries, and you may not move both pieces at the same time. Also, it is not allowed to rearrange the order in which queries are given. It is, however, allowed to have both pieces in the same square at the same time.
Constraints
- 1≤N,Q≤200,000
- 1≤A,B≤N
- 1≤xi≤N
Input
Input is given from Standard Input in the following format:
N Q A B
x1 x2 ... xQ
Output
Let the shortest possible time to process all the queries be X seconds. Print X.
Sample Input 1
8 3 1 8
3 5 1
Sample Output 1
7
All the queries can be processed in seven seconds, by:
- moving the piece at square 1 to 3
- moving the piece at square 8 to 5
- moving the piece at square 3 to 1
Sample Input 2
9 2 1 9
5 1
Sample Output 2
4
The piece at square 9 should be moved first.
Sample Input 3
9 2 1 9
5 9
Sample Output 3
4
The piece at square 1 should be moved first.
Sample Input 4
11 16 8 1
1 1 5 1 11 4 5 2 5 3 3 3 5 5 6 7
Sample Output 4
21
分析:考虑dp[i][j]表示当前在x[i],j位置;
设之前一步在a,b,当前到c,d,且a,c为上次和这次到达点;
那么有a->c或b->c;
若a->c,则dp[i][j]直接加上abs(x[i]-x[i-1]);
若b->c,则dp[i][a]取min{dp[i-1][j]+abs(j-x[i])};
而这两个都可以用线段树维护;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <cassert>
#include <ctime>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define mod 1000000009
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
#define ls rt<<1
#define rs rt<<1|1
const int maxn=2e5+;
const int N=2e5+;
using namespace std;
int id(int l,int r){return l+r|l!=r;}
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p%mod;p=p*p%mod;q>>=;}return f;}
int n,m,k,t,q,a,b;
ll tag[maxn<<],mi[maxn<<],mi1[maxn<<],mi2[maxn<<];
void pup(int rt)
{
mi[rt]=min(mi[ls],mi[rs]);
mi1[rt]=min(mi1[ls],mi1[rs]);
mi2[rt]=min(mi2[ls],mi2[rs]);
tag[rt]=;
}
void pdw(int rt)
{
mi[ls]+=tag[rt];
mi1[ls]+=tag[rt];
mi2[ls]+=tag[rt];
tag[ls]+=tag[rt];
mi[rs]+=tag[rt];
mi1[rs]+=tag[rt];
mi2[rs]+=tag[rt];
tag[rs]+=tag[rt];
tag[rt]=;
}
void build(int l,int r,int rt)
{
if(l==r)
{
mi[rt]=mi1[rt]=mi2[rt]=1e18;
tag[rt]=;
return;
}
int mid=l+r>>;
build(l,mid,ls);
build(mid+,r,rs);
pup(rt);
}
void add(int L,int R,ll v,int l,int r,int rt)
{
if(L==l&&R==r)
{
mi[rt]+=v;
mi1[rt]+=v;
mi2[rt]+=v;
tag[rt]+=v;
return;
}
int mid=l+r>>;
if(tag[rt])pdw(rt);
if(R<=mid)add(L,R,v,l,mid,ls);
else if(L>mid)add(L,R,v,mid+,r,rs);
else
{
add(L,mid,v,l,mid,ls);
add(mid+,R,v,mid+,r,rs);
}
pup(rt);
}
void upd(int pos,ll v,int l,int r,int rt)
{
if(l==pos&&pos==r)
{
if(mi[rt]>v)
{
mi[rt]=v;
mi1[rt]=v-pos;
mi2[rt]=v+pos;
}
return;
}
int mid=l+r>>;
if(tag[rt])pdw(rt);
if(pos<=mid)upd(pos,v,l,mid,ls);
else upd(pos,v,mid+,r,rs);
pup(rt);
}
ll gao(int L,int R,int l,int r,int rt,ll *mi)
{
if(L==l&&R==r)return mi[rt];
int mid=l+r>>;
if(tag[rt])pdw(rt);
if(R<=mid)return gao(L,R,l,mid,ls,mi);
else if(L>mid)return gao(L,R,mid+,r,rs,mi);
else return min(gao(L,mid,l,mid,ls,mi),gao(mid+,R,mid+,r,rs,mi));
}
int main()
{
int i,j;
scanf("%d%d%d%d",&n,&q,&a,&b);
build(,n,);
upd(b,,,n,);
int pre=a;
rep(i,,q)
{
int x;
scanf("%d",&x);
ll cost1=gao(,x,,n,,mi1)+x;
ll cost2=gao(x,n,,n,,mi2)-x;
ll now=min(cost1,cost2);
add(,n,abs(x-pre),,n,);
upd(pre,now,,n,);
pre=x;
}
printf("%lld\n",gao(,n,,n,,mi));
return ;
}
F - Many Moves的更多相关文章
- arc073 F many moves(dp + 线段树)
设dp[i][y]表示一个点在x[i],另一个点在y时最小要走的步数 那么有以下转移 对于y != x[i-1]的状态,可以证明,他们直接加|x[i] - x[i-1]|即可(如果有其他方案,不符合对 ...
- Scalaz(23)- 泛函数据结构: Zipper-游标定位
外面沙尘滚滚一直向北去了,意识到年关到了,码农们都回乡过年去了,而我却留在这里玩弄“拉链”.不要想歪了,我说的不是裤裆拉链而是scalaz Zipper,一种泛函数据结构游标(cursor).在函数式 ...
- AtCoder瞎做第二弹
ARC 067 F - Yakiniku Restaurants 题意 \(n\) 家饭店,\(m\) 张餐票,第 \(i\) 家和第 \(i+1\) 家饭店之间的距离是 \(A_i\) ,在第 \( ...
- 【AtCoder】ARC073
ARC 073 C - Sentou 直接线段覆盖即可 #include <bits/stdc++.h> #define fi first #define se second #defin ...
- Mysql_以案例为基准之查询
查询数据操作
- 2016 ccpc 网络选拔赛 F. Robots
Robots Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...
- [Educational Codeforces Round 16]A. King Moves
[Educational Codeforces Round 16]A. King Moves 试题描述 The only king stands on the standard chess board ...
- UVA 439 Knight Moves
// 题意:输入标准国际象棋棋盘上的两个格子,求马最少需要多少步从起点跳到终点 BFS求最短路: bfs并维护距离状态cnt, vis记录是否访问过 #include<cstdio> ...
- POJ 2243 Knight Moves
Knight Moves Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13222 Accepted: 7418 Des ...
随机推荐
- P1491 集合位置 次短路
这个题是一个次短路的裸题,就是把最短路路径求出来之后依次删边,然后跑最短路,在这些情况里取最小值就行了. 题干: 每次有大的活动,大家都要在一起“聚一聚”,不管是去好乐迪,还是避风塘,或者汤姆熊,大家 ...
- Network(Tarjan+LCA)
http://poj.org/problem?id=3417 元宵节+情人节晚上刷的题,纪念一下.. 题意:给出n个点,m条边,然后Q个询问,每次询问输入一条边,输出加入此边后桥的个数.. #incl ...
- Tyvj1305最大子序和(单调队列优化dp)
描述 输入一个长度为n的整数序列,从中找出一段不超过M的连续子序列,使得整个序列的和最大. 例如 1,-3,5,1,-2,3 当m=4时,S=5+1-2+3=7当m=2或m=3时,S=5+1=6 输入 ...
- python3+request接口自动化框架
首次书写博客,记录下写的自动化接口框架,框架比较简单,哈哈哈,算是记录下历程把!~~~ 一.本次框架由python3.6 书写 1.准备代码环境,下载python3.6 下载地址:https:/ ...
- 判断IOS静态库(.a文件)是否支持模拟器和真机运行
判断IOS静态库(.a文件)是否支持模拟器和真机运行 在mac终端下,进入到.a文件目录下,然后输入: lipo -info libMyAlertView.a Architectures in the ...
- python自动化测试学习笔记-6urllib模块&request模块
python3的urllib 模块提供了获取页面的功能. urllib.request.urlopen(url, data=None, [timeout, ]*, cafile=None, capat ...
- Spring思维课程导图——bean属性的设置
- [转]Android ListView的Item高亮显示的办法
本文转自:http://www.cnblogs.com/dyllove98/archive/2013/07/31/3228601.html 在我们使用ListView的时候,经常会遇到某一项(Item ...
- HTML 表格与表单 个人简历
<title>个人简历</title></head> <body background="1e30e924b899a9015b946ac41f950 ...
- MVC系列学习(三)-EF的延迟加载
1.什么叫延迟加载 字面上可以理解为,一个动作本该立即执行的动作,没有立即执行 2.从代码上理解 static void Main(string[] args) { //执行该语句的时候,查看sql监 ...