http://acm.hdu.edu.cn/showproblem.php?pid=1166

Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
 
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
 
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
 
Sample Input
1
10
12 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End
 
Sample Output
Case 1:
6
33
59
线段树型题目。第一次接触线段树,疯了一下午。
#include<iostream>
#include<cstdio>
using namespace std;
const int mod=5e5+;
int a[mod];
struct Node
{
int val;
}node[mod*];
void build(int l,int r,int root)//建树
{
int mid;
mid=(l+r)/;
if(l==r)
{
node[root].val=a[l];
return ;
}
build(l,mid,root*);
build(mid+,r,root*+);
node[root].val=node[root*].val+node[root*+].val;
}
void update(int p,int add,int l,int r,int root)
{
int mid;
mid=(l+r)/;
if(l==r)
{
node[root].val+=add;
return ;
}
if(p<=mid)update(p,add,l,mid,root*);
else update(p,add,mid+,r,root*+);
node[root].val=node[root*].val+node[root*+].val;
}
int query(int ll,int rr,int l,int r,int root)
{
int k=;
int mid=(l+r)/;
if(ll<=l && rr>=r) return node[root].val;
if(ll<=mid) k+=query(ll,rr,l,mid,root*);
if(rr>mid) k+=query(ll,rr,mid+,r,root*+);
return k;
}
int main()
{
int n,T,o,i,l,r,x,sum;
char s[];
cin>>T;
o=T;
while(T--)
{
cin>>n;
for(i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
build(,n,);
cout<<"Case "<<o-T<<":"<<endl;;
while(scanf("%s",s)!=EOF)
{
if(s[]=='E')break;
if(s[]=='A')
{
scanf("%d%d",&l,&x);
update(l,x,,n,);
}
if(s[]=='S')
{
scanf("%d%d",&l,&x);
update(l,-x,,n,);
}
if(s[]=='Q')
{
scanf("%d%d",&l,&r);
sum=query(l,r,,n,);
printf("%d\n",sum);
}
}
}
return ;
}//注意:用线段树时,输入输出最好用scanf printf;
 非递归线段树
#include <bits/stdc++.h>
using namespace std;
#define maxn 50009
int sum[maxn<<];
int a[maxn],N,t,n,x,y;
char s[];
void build()
{
N=;while(N<n+) N<<=;
for(int i=;i<=n;i++)
sum[N+i]=a[i];
for(int i=N-;i;i--)
sum[i]=sum[i<<]+sum[i<<|];
}
void update(int pos,int val)
{
for(int i=N+pos;i;i>>=)
sum[i]+=val;
}
int query(int l,int r)
{
int ans=;
for(int i=N+l-,j=N+r+;i^j^;i>>=,j>>=)
{
if(~i&) ans+=sum[i^];
if(j&) ans+=sum[j^];
}
return ans;
}
int main()
{
scanf("%d",&t);
int T=t;
while(t--)
{
memset(sum,,sizeof(sum));
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
printf("Case %d:\n",T-t);
build();
while(scanf("%s",&s) && s[]!='E')
{
scanf("%d%d",&x,&y);
if(s[]=='Q') printf("%d\n",query(x,y));
else if(s[]=='A') update(x,y);
else update(x,(-)*y);
}
}
return ;
}

HDU 1166 敌兵布阵(线段树单节点更新 区间求和)的更多相关文章

  1. hdu 1166 敌兵布阵 (线段树、单点更新)

    敌兵布阵Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  2. HDU.1166 敌兵布阵 (线段树 单点更新 区间查询)

    HDU.1166 敌兵布阵 (线段树 单点更新 区间查询) 题意分析 加深理解,重写一遍 代码总览 #include <bits/stdc++.h> #define nmax 100000 ...

  3. hdu 1166 敌兵布阵 线段树 点更新

    // hdu 1166 敌兵布阵 线段树 点更新 // // 这道题裸的线段树的点更新,直接写就能够了 // // 一直以来想要进线段树的坑,结果一直没有跳进去,今天算是跳进去吧, // 尽管十分简单 ...

  4. HDU 1166 敌兵布阵(线段树单点更新,板子题)

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  5. HDU 1166 敌兵布阵(线段树单点更新)

    敌兵布阵 单点更新和区间更新还是有一些区别的,应该注意! [题目链接]敌兵布阵 [题目类型]线段树单点更新 &题意: 第一行一个整数T,表示有T组数据. 每组数据第一行一个正整数N(N< ...

  6. HDU 1754 线段树 单点跟新 HDU 1166 敌兵布阵 线段树 区间求和

    I Hate It Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  7. HDU 1166 敌兵布阵 <线段树 单点修改 区间查询>

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  8. hdu 1166 敌兵布阵 线段树区间修改、查询、单点修改 板子题

    题目链接:敌兵布阵 题目: C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了.A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视 ...

  9. HDU 1166 敌兵布阵 线段树

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  10. hdu 1166 敌兵布阵(线段树详解)

    Problem Description C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了.A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任 ...

随机推荐

  1. m_Orchestrate learning system---十八、mo项目的启示是什么

    m_Orchestrate learning system---十八.mo项目的启示是什么 一.总结 一句话总结:多看教程,体统看教程的学, 完全不懂的话百度的作用也不大 多学点,可以节约后面的超多时 ...

  2. 一题多解(一) —— list(Python)判空(以及 is 与 == 的区别)

    >> l = [] 1. == >> l == [] True 2. not >> not l True 3. 注意 is 与 == 的区别 >> l ...

  3. 90.bower解决js的依赖管理

    转自:https://blog.csdn.net/u011537073/article/details/52951122 前言一个新的web项目开始,我们总是很自然地去下载需要用到的js类库文件,比如 ...

  4. python 3.x 学习笔记11 (静态、类、属性、特殊成员方法)

    1.静态方法通过@staticmethod装饰器即可把其装饰的方法变为一个静态方法.静态方法是不可以访问实例变量或类变量的即没有self,一个不能访问实例变量和类变量的方法,其实相当于跟类本身已经没什 ...

  5. HDU 1166 敌兵布阵【线段树 单点更新】

    题意:给出n个数,a1,a2,a3,,,,,an,再给出一些操作 add i  j 表示给第i个节点增加j sub i  j 表示给第i个节点减少j query i j 表示询问第i个节点到第j个节点 ...

  6. CSS3-----transform 转换

    transforn  可以转换元素,其中主要属性有:rotate() / skew() / scale() / translate()以下4种. transform:rotate():旋转:其中“de ...

  7. 优动漫PAINT中误删工具怎么办?

    最近收到一些小伙伴的提问,说我不小心把 XXX工具从面板上删掉了怎么办?本教程就来给大家分 享一下遇到这个问题时的三种解决方法,遇到同样问题的小伙伴们赶紧进来看一下哟! 优动漫PAINT下载:http ...

  8. CodeForces-1007A Reorder the Array 贪心 田忌赛马

    题目链接:https://cn.vjudge.net/problem/CodeForces-1007A 题意 给个数组,元素的位置可以任意调换 问调换后的元素比此位置上的原元素大的元素个数最大多少 思 ...

  9. POJ 1821 Fence(单调队列优化DP)

    题解 以前做过很多单调队列优化DP的题. 这个题有一点不同是对于有的状态可以转移,有的状态不能转移. 然后一堆边界和注意点.导致写起来就很难受. 然后状态也比较难定义. dp[i][j]代表前i个人涂 ...

  10. dashboard安装

    1,安装程序包 # yum install -y openstack-dashboard 2,修改配置文件 # vim /etc/openstack-dashboard/local_settings ...