LMS、NLMS最优步长理论分析与Speex回声消除可能的改进想法
一、回声消除算法模型
先来分析下自适应回声消除的主要组成部分,大体上可以把回声消除模型分为两个部分
- 横向滤波器结构
- 滤波器系数自适应与步长控制
横向滤波器用脉冲响应w(n)【有的地方也称为回声路径】与远端说话者信号u(n)卷积得到回声估计,并用y(n)表示该估计。麦克风输出信号做为期望响应d(n),从期望响应d(n)中减去滤波器的”合成回声”,得到误差信号e(n)。通过不断的调整滤波器系数w(n)使误差信号的均方值最小化,其结果就是:误差信号为本地语音提供了一个近似的估计。这就是为什么这样的结构能去掉回声的原因。
二、LMS算法最优步长分析
下面我们重点说一下LMS滤波器系数自适应更新中的步长控制问题,也就是如何获得最优步长的问题。我们首先把期望响应用向量的形式表示如下:
\[d(n) = {w^H}u(n) + v(n)\]
上式中,w是横向滤波器的未知参数向量,v(n)为加性干扰噪声。通过LMS滤波器计算得到的抽头权向量是对w的估计,它们之间的失配用加权误差向量
\[\varepsilon (n + 1) = w - \hat w(n)\]
来衡量,由横向滤波器系数的的自适应更新机制
\[\hat w(n + 1) = \hat w(n) + \mu u(n)e(n)\]
可得
\[\varepsilon (n + 1) = \varepsilon (n) - \mu u(n)e(n)\]
如果我们对抽头权向量n次迭代到n+1次迭代的抽头权向量的增量变化最小为准则来选择最优步长,即使
\[E\{ |\varepsilon (n + 1){|^2}\} - E\{ |\varepsilon (n){|^2}\} \]
达到最小,为求最优步长,将其展开,得到
\[E\{ |\varepsilon (n + 1){|^2}\} - E\{ |\varepsilon (n){|^2}\} = {\mu ^2}E\{ {e^2}(n)|u(n){|^2}\} - 2\mu E\{ e(n){\varepsilon ^T}(n)u(n)\} \]
设额外误差向量(有的地方也称为无干扰误差,即假设没有噪声情况下的系数输出误差)与滤波器权值误差向量之间的关系为
\[\xi (n) = {\varepsilon ^T}(n)u(n)\]
则
\[E\{ |\varepsilon (n + 1){|^2}\} - E\{ |\varepsilon (n){|^2}\} = {\mu ^2}E\{ {e^2}(n)|u(n){|^2}\} - 2\mu E\{ e(n)\xi (n)\} \]
对上式两边求导,并置导数为0,很容易就可以得到最优步长为
\[{\mu _{opt}}(n) = \frac{{E\{ e(n)\xi (n)\} }}{{E\{ {e^2}(n)|u(n){|^2}\} }}\]
又因为额外误差可以视为系统输出误差与加性干扰噪声之差
\[\xi (n) = e(n) - v(n)\]
再假设加性干扰噪声信号与额外误差信号相关独立,则最优步长可以写为
\[{\mu _{opt}}(n) \approx \frac{{E\{ e(n)\xi (n)\} }}{{|u(n){|^2}E\{ {e^2}(n)\} }} = \frac{{E\{ {e^2}(n)\} - E\{ {v^2}(n)\} }}{{|u(n){|^2}E\{ {e^2}(n)\} }}\]
可以看出,当噪声信号不存在时,LMS算法的最优步长等于固定步长的NLMS算法
三、NLMS算法最优步长分析
下面再分析下NLMS滤波器的最优步长,NLMS横向滤波器系数的的自适应更新机制为
\[w(n + 1) = w(n) + \frac{\mu }{{|u(n){|^2}}}u(n)e(n)\]
两边减去w,整理可得
\[\varepsilon (n + 1) = \varepsilon (n) - \frac{\mu }{{|u(n){|^2}}}u(n)e(n)\]
我们同样对抽头权向量n次迭代到n+1次迭代的抽头权向量的增量变化最小为准则来选择最优步长,即使
\[E\{ |\varepsilon (n + 1){|^2}\} - E\{ |\varepsilon (n){|^2}\} = {\mu ^2}E\left\{ {\frac{{|e(n){|^2}}}{{|u(n){|^2}}}} \right\} - 2\mu E\left\{ {\frac{{e(n)\xi (n)}}{{|u(n){|^2}}}} \right\}\]
最小,按上面分析LMS滤波器时的思路进行求导并整理,最终得到NLMS的最优步长为
\[{\mu _{opt}} = \frac{{E\{ e(n)\xi (n)/|u(n){|^2}\} }}{{E\{ |e(n){|^2}/|u(n){|^2}\} }}\]
为了简化最优步长的计算,我们假设从一次迭代到下一次迭代的输入信号能量的波动足够小,以满足以下近似
\[E\{ e(n)\xi (n)/|u(n){|^2}\} = E\{ e(n)\xi (n)\} /E\{ |u(n){|^2}\} \]
和
\[E\{ |e(n){|^2}/|u(n){|^2}\} = E\{ |e(n){|^2}\} /E\{ |u(n){|^2}\} \]
则最优步长可以重写为
\[{\mu _{opt}} = \frac{{E\{ e(n)\xi (n)\} }}{{E\{ |e(n){|^2}\} }}\]
又因为加性干扰噪声信号与额外误差信号相关独立,再次重写最优步长
\[{\mu _{opt}} = \frac{{E\{ e(n)\xi (n)\} }}{{E\{ |e(n){|^2}\} }} = \frac{{E\{ [\xi (n) + v(n)]\xi (n)\} }}{{E\{ |e(n){|^2}\} }} = \frac{{E\{ |\xi (n){|^2}\} }}{{E\{ |e(n){|^2}\} }} = \frac{{E\{ |{\varepsilon ^T}(n)u(n){|^2}\} }}{{E\{ |e(n){|^2}\} }}\]
如果我们接下来假设输入信号u(n)的频谱中,每个频点分别对加权误差向量频谱的对应频点的影响都是相同的,那么
\[E\{ |{\varepsilon ^T}(n)u(n){|^2}\} \approx E\{ |{\varepsilon ^T}(n){|^2}\} E\{ |u(n){|^2}\} \]
最终得到的最优步长可以近似为
\[{\mu _{opt}} = \frac{{E\{ |{\varepsilon ^T}(n)u(n){|^2}\} }}{{E\{ |e(n){|^2}\} }} \approx \frac{{E\{ |{\varepsilon ^T}(n){|^2}\} E\{ |u(n){|^2}\} }}{{E\{ |e(n){|^2}\} }}\]
细心的朋友可能已经看出来了,这个结论与Speex回声消除原理深度解析一文中的最优步长结论意义上可以认为是相同的(采用的符号表示不同,不影响理解),这说明无论从哪个角度分析,在抽头权向量均方偏差最小的约束准则下,得到的最优步长的结论都是一样的。
四、改进思路
既然原理已经分析清楚了,现在再来看看,针对这个原理的Speex实现,可以有哪些改进的思路。本人水平有限,这里先分享出来,欢迎各位朋友批评指正不足之处!
- 最优初始值问题,Speex虽然采用了MDF做为长延时滤波,但本质上仍然是时域滤波原理,只是在频域做罢了。那么为了尽可能的在启动时快速收敛,滤波器权向量的初始值问题就不好简单的用0来初始化。
- 回声对每个频点的影响是不同的,不能用一个泄露因子来表示,如果在频域进行分段处理,每段采用不同的泄露因子,应是可行的一个思路
- 没有考虑不同扬声器到麦克风回声路径的非线性差异。这个差异在手机端效果效果很明显,如果对远端参考信号做非线性处理,可以弱化这个影响。
LMS、NLMS最优步长理论分析与Speex回声消除可能的改进想法的更多相关文章
- speex 回声消除的用法
speex 回声消除的用法 分类: speex AEC 回声消除 2012-11-13 11:24 1336人阅读 评论(0) 收藏 举报 speex的回声消息 就是speex_echo_cancel ...
- Speex回声消除代码分析
先说明下,这里的代码流程是修改过的Speex流程,但与Speex代码差异不大,应该不影响阅读. (1)用RemoveDCoffset函数进行去直流 (2)远端信号预加重后放入x[i+frame_s ...
- Speex回声消除原理深度解析
这里假设读者具有自适应滤波器的基础知识.Speex的AEC是以NLMS为基础,用MDF频域实现,最终推导出最优步长估计:残余回声与误差之比.最优步长等于残余回声方差与误差信号方差之比,这个结论可以记下 ...
- Speex Acoustic Echo Cancellation (AEC) 回声消除模块的使用
背景:回声与啸叫的产生 http://blog.csdn.net/u011202336/article/details/9238397 参考资料: http://www.speex.org/doc ...
- 回声消除中的LMS和NLMS算法与MATLAB实现
自适应滤波是数字信号处理的核心技术之一,在科学和工业上有着广泛的应用领域.自适应滤波技术应用广泛,包括回波抵消.自适应均衡.自适应噪声抵消和自适应波束形成.回声对消是当今通信系统中普遍存在的现象.声回 ...
- speex与webrtc回声消除小结
回声消除AEC包含: 延时估计对齐+线性自适应滤波器+NLP(双讲检测.处理)+舒适噪声CNG 一.speex aec 1.没有NLP 2.只考虑实时DSP系统,即是没有延时对齐等 3.自适应滤波 ...
- 回声消除(AEC)原理
一.前言 因为工作的关系,笔者从2004年开始接触回声消除(Echo Cancellation)技术,而后一直在某大型通讯企业从事与回声消除技术相关的工作,对回声消除这个看似神秘.高端和难以理解的技术 ...
- 声学回声消除(Acoustic Echo Cancellation)
回声就是声音信号经过一系列反射之后,又听到了自己讲话的声音,这就是回声.一些回声是必要的,比如剧院里的音乐回声以及延迟时间较短的房间回声:而大多数回声会造成负面影响,比如在有线或者无线通信时重复听到自 ...
- Flex Flash Player回声消除的最佳方法
Adobe Flash Player 已经成为音频和视频播放的非常流行的工具.实际上,目前大多数因特网视频均使用 Flash Player观看. Flash Player 通过将许多技术进行组合可以提 ...
随机推荐
- NSOperationQueue和GCD的区别,以及在什么场合下使用
1> GCD是纯C语言的API .NSOperationQueue是基于GCD的OC的封装. 2> GCD只支持FIFO队列,NSOperationQueue可以方便设置执行顺序,设置最大 ...
- 学不好Python?我们分析看看正确的学习方法是什么-马哥教育
提起对Python的印象,除了全能之外恐怕就是简单易学了.很多人都在推荐新手学Python入门,毕竟语法简单.语句简洁,所谓“人生苦短我用Python”绝不是一句空话.不过也不能忽视一点:Python ...
- 【Redis】一、Redis简介及五种数据类型
(一)Redis简介 Redis(Remote Dictionary Server)是一个使用ANSI C语言编写.遵守BSD协议.支持网络.可基于内存亦可持久化的日志型.Key-Value的开源 ...
- adjtimex和时钟的几个概念tick,freq,ppm,jiffies
adjtimex使用 今天遇到一个ntp的同步问题.服务器上配置好了ntpd,在启动前也手动进行过同步,但是过段时间ntpq查询发现服务器即便能选出同步服务器,但是系统的时间偏差越来越大. 服务器上实 ...
- C++入职学习篇--代码规范(持续更新)
C++入职学习篇--代码规范(持续更新) 一.头文件规范 在头文件中大家一般会定义宏.引入库函数.声明.定义全局变量等,在设计时最后进行分类,代码示范(自己瞎琢磨的,请多多指点): #ifndef T ...
- python文件头的含义
一.指定解释器及其路径 在Linux\Mac上,可以用./文件路径直接运行.py文件 这时,需要在python文件开头指定解释器及其路径 #!/usr/bin/python 这样系统就直接按pytho ...
- (38)Spring Boot分布式Session状态保存Redis【从零开始学Spring Boot】
[本文章是否对你有用以及是否有好的建议,请留言] 在使用spring boot做负载均衡的时候,多个app之间的session要保持一致,这样负载到不同的app时候,在一个app登录之后,而访问到另外 ...
- mybatis源码阅读-初始化过程(七)
说明 mybatis初始化过程 就是解析xml到封装成Configuration对象 供后续使用 SqlSessionFactoryBuilder 代码例子 SqlSessionFactoryBuil ...
- Windows超级卸载工具Total Uninstaller,能完全卸载.NET Framework
https://github.com/tsasioglu/Total-Uninstaller
- Openfire:解决乱码问题
当部署openfire后,创建用户和发送离线消息时会出现中文字符乱码的问题.要解决这个问题需要同时配置openfire和mysql两端. 首先openfire端,在安装页面中指定odbc连接串中需要带 ...