NumPy 排序、条件刷选函数
NumPy 排序、条件刷选函数
NumPy 提供了多种排序的方法。 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性。 下表显示了三种排序算法的比较。
| 种类 | 速度 | 最坏情况 | 工作空间 | 稳定性 |
|---|---|---|---|---|
'quicksort'(快速排序) |
1 | O(n^2) |
0 | 否 |
'mergesort'(归并排序) |
2 | O(n*log(n)) |
~n/2 | 是 |
'heapsort'(堆排序) |
3 | O(n*log(n)) |
0 | 否 |
numpy.sort()
numpy.sort() 函数返回输入数组的排序副本。函数格式如下:
numpy.sort(a, axis, kind, order)
参数说明:
- a: 要排序的数组
- axis: 沿着它排序数组的轴,如果没有数组会被展开,沿着最后的轴排序, axis=0 按列排序,axis=1 按行排序
- kind: 默认为'quicksort'(快速排序)
- order: 如果数组包含字段,则是要排序的字段
实例
输出结果为:
我们的数组是:
[[3 7]
[9 1]] 调用 sort() 函数:
[[3 7]
[1 9]] 按列排序:
[[3 1]
[9 7]] 我们的数组是:
[(b'raju', 21) (b'anil', 25) (b'ravi', 17) (b'amar', 27)] 按 name 排序:
[(b'amar', 27) (b'anil', 25) (b'raju', 21) (b'ravi', 17)]
numpy.argsort()
numpy.argsort() 函数返回的是数组值从小到大的索引值。
实例
输出结果为:
我们的数组是:
[3 1 2] 对 x 调用 argsort() 函数:
[1 2 0] 以排序后的顺序重构原数组:
[1 2 3] 使用循环重构原数组 1 2 3
numpy.lexsort()
numpy.lexsort() 用于对多个序列进行排序。把它想象成对电子表格进行排序,每一列代表一个序列,排序时优先照顾靠后的列。
这里举一个应用场景:小升初考试,重点班录取学生按照总成绩录取。在总成绩相同时,数学成绩高的优先录取,在总成绩和数学成绩都相同时,按照英语成绩录取…… 这里,总成绩排在电子表格的最后一列,数学成绩在倒数第二列,英语成绩在倒数第三列。
实例
输出结果为:
调用 lexsort() 函数:
[3 1 0 2] 使用这个索引来获取排序后的数据:
['amar, f.y.', 'anil, s.y.', 'raju, f.y.', 'ravi, s.y.']
上面传入 np.lexsort 的是一个tuple,排序时首先排 nm,顺序为:amar、anil、raju、ravi 。综上排序结果为 [3 1 0 2]。
msort、sort_complex、partition、argpartition
| 函数 | 描述 |
|---|---|
| msort(a) | 数组按第一个轴排序,返回排序后的数组副本。np.msort(a) 相等于 np.sort(a, axis=0)。 |
| sort_complex(a) | 对复数按照先实部后虚部的顺序进行排序。 |
| partition(a, kth[, axis, kind, order]) | 指定一个数,对数组进行分区 |
| argpartition(a, kth[, axis, kind, order]) | 可以通过关键字 kind 指定算法沿着指定轴对数组进行分区 |
复数排序:
>>> import numpy as np
>>> np.sort_complex([5, 3, 6, 2, 1])
array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j])
>>>
>>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j])
array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j])
partition() 分区排序:
>>> a = np.array([3, 4, 2, 1])
>>> np.partition(a, 3) # 将数组 a 中所有元素(包括重复元素)从小到大排列,比第3小的放在前面,大的放在后面
array([2, 1, 3, 4])
>>>
>>> np.partition(a, (1, 3)) # 小于 1 的在前面,大于 3 的在后面,1和3之间的在中间
array([1, 2, 3, 4])
找到数组的第 3 小(index=2)的值和第 2 大(index=-2)的值
>>> arr = np.array([46, 57, 23, 39, 1, 10, 0, 120])
>>> arr[np.argpartition(arr, 2)[2]]
10
>>> arr[np.argpartition(arr, -2)[-2]]
57
同时找到第 3 和第 4 小的值。注意这里,用 [2,3] 同时将第 3 和第 4 小的排序好,然后可以分别通过下标 [2] 和 [3] 取得。
>>> arr[np.argpartition(arr, [2,3])[2]]
10
>>> arr[np.argpartition(arr, [2,3])[3]]
23
numpy.argmax() 和 numpy.argmin()
numpy.argmax() 和 numpy.argmin()函数分别沿给定轴返回最大和最小元素的索引。
实例
输出结果为:
我们的数组是:
[[30 40 70]
[80 20 10]
[50 90 60]] 调用 argmax() 函数:
7 展开数组:
[30 40 70 80 20 10 50 90 60] 沿轴 0 的最大值索引:
[1 2 0] 沿轴 1 的最大值索引:
[2 0 1] 调用 argmin() 函数:
5 展开数组中的最小值:
10 沿轴 0 的最小值索引:
[0 1 1] 沿轴 1 的最小值索引:
[0 2 0]
numpy.nonzero()
numpy.nonzero() 函数返回输入数组中非零元素的索引。
实例
输出结果为:
我们的数组是:
[[30 40 0]
[ 0 20 10]
[50 0 60]] 调用 nonzero() 函数:
(array([0, 0, 1, 1, 2, 2]), array([0, 1, 1, 2, 0, 2]))
numpy.where()
numpy.where() 函数返回输入数组中满足给定条件的元素的索引。
实例
输出结果为:
我们的数组是:
[[0. 1. 2.]
[3. 4. 5.]
[6. 7. 8.]]
大于 3 的元素的索引:
(array([1, 1, 2, 2, 2]), array([1, 2, 0, 1, 2]))
使用这些索引来获取满足条件的元素:
[4. 5. 6. 7. 8.]
numpy.extract()
numpy.extract() 函数根据某个条件从数组中抽取元素,返回满条件的元素。
实例
输出结果为:
我们的数组是:
[[0. 1. 2.]
[3. 4. 5.]
[6. 7. 8.]]
按元素的条件值:
[[ True False True]
[False True False]
[ True False True]]
使用条件提取元素:
[0. 2. 4. 6. 8.]
NumPy 排序、条件刷选函数的更多相关文章
- 15、numpy——排序、条件刷选函数
NumPy 提供了多种排序的方法. 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性. 下表显示了三种排序算法的比较. 种类 速度 最坏情况 ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 排序、条件刷选函数
numpy.sort() 函数返回输入数组的排序副本.函数格式如下: numpy.sort(a, axis, kind, order) 参数说明: a: 要排序的数组 axis: 沿着它排序数组的轴, ...
- MVC3+EF4.1学习系列(三)-----排序 刷选 以及分页
上篇文章 已经做出了基本的增删改查 但这远远不足以应付实际的项目 今天讲下实际项目中 肯定会有的 排序 刷选 以及分页. 重点想多写点分页的 毕竟这个是任何时候都要有的 而且 我会尽量把这个 ...
- NumPy排序、搜索和计数函数
NumPy - 排序.搜索和计数函数 NumPy中提供了各种排序相关功能. 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性. 下表显示了三种 ...
- NumPy 排序、查找、计数
章节 Numpy 介绍 Numpy 安装 NumPy ndarray NumPy 数据类型 NumPy 数组创建 NumPy 基于已有数据创建数组 NumPy 基于数值区间创建数组 NumPy 数组切 ...
- NumPy之:ndarray中的函数
NumPy之:ndarray中的函数 目录 简介 简单函数 矢量化数组运算 条件逻辑表达式 统计方法 布尔数组 排序 文件 线性代数 随机数 简介 在NumPy中,多维数组除了基本的算数运算之外,还内 ...
- numpy中的arg系列函数
numpy中的arg系列函数 觉得有用的话,欢迎一起讨论相互学习~Follow Me 不定期更新,现学现卖 numpy中arg系列函数被经常使用,通常先进行排序然后返回原数组特定的索引. argmax ...
- Python3:numpy模块中的argsort()函数
Python3:numpy模块中的argsort()函数 argsort函数是Numpy模块中的函数: >>> import numpy >>> help(nu ...
- ormlite 在android中 排序 条件查询
ormlite 在android中 排序 条件查询 all = dao.queryBuilder().orderBy("Id", true).where().eq("Ty ...
随机推荐
- django之def get_response(self, request):
class BaseHandler(object)方法get_response,控制着处理请求的流程,调用中间件,返回请求. def get_response(self, request): &quo ...
- Oracle服务无法启动,报:Windows无法启动OracleOraDb10g_home1TNSListener服务,错误 1067:进程意外终止。
运行配置和移植工具中的Net Configuration Assistant,进行监听程序配置.删除配置,然后重新配置. 切记 一定是先删除配置,再重新配置,而不是新建配置. 或者 打开Net Man ...
- poi excel设置合并单元格边框格式
版本3.17 //设置合并单元格的边框 public static void setBorderForMergeCell(BorderStyle style,int color, CellRangeA ...
- J2SE 8的流库 --- 收集处理结果
分类:简单计算, 收集到映射表中 , 群组和分组, 下游收集器, 约简操作 reduce() ArrayList<String> arrayList = new ArrayList< ...
- 02-body标签中相关标签-1
主要内容: 字体标签: h1~h6.<font>.<u>.<b>.<strong><em>.<sup>.<sub> ...
- day19-高阶函数、匿名函数
map 函数 map 是一个在 Python 里非常有用的高阶函数.它接受一个函数和一个序列(迭代器)作为输入,然后对序列(迭代器)的每一个值应用这个函数,返回一个序列(迭代器),其包含应用函数后的结 ...
- Linux swap 使用
使用的背景 内存吃紧的时候可以考虑使用swap. swap新增 http://www.cnblogs.com/wuxie1989/p/5888595.html swap 使用 https://www. ...
- UI5-学习篇-18-云端UI5应用部署到Fiori Launchpad
UI5应用发布SCP 选择UI5应用项目,右键 Deploy - Deploy to SAP Cloud Platform 输入云平台子账号,项目名称,应用名称,如下图所示: 点击Open the r ...
- vue启动时报错,node-modules下xxx缺失
从qq上拷贝了一个项目,解压后打开进vscode,安装依赖与scss后启动,显示node-modules下xxx指向缺失(想不起来是哪个缺失了),在网上找了很多解决办法,包括重新安装node 与 np ...
- GPS坐标转换 百度地图API调用
1 如果GPS输出的值是DD.DDDDDDDD格式的,直接调用地图API的转换函数处理,就可以正常显示2 如果GPS输出的值是DD.MMMMMMMM格式的,就需要先进行分转度处理,然后再调API,就可 ...