NumPy 排序、条件刷选函数

NumPy 提供了多种排序的方法。 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性。 下表显示了三种排序算法的比较。

种类 速度 最坏情况 工作空间 稳定性
'quicksort'(快速排序) 1 O(n^2) 0
'mergesort'(归并排序) 2 O(n*log(n)) ~n/2
'heapsort'(堆排序) 3 O(n*log(n)) 0

numpy.sort()

numpy.sort() 函数返回输入数组的排序副本。函数格式如下:

numpy.sort(a, axis, kind, order)

参数说明:

  • a: 要排序的数组
  • axis: 沿着它排序数组的轴,如果没有数组会被展开,沿着最后的轴排序, axis=0 按列排序,axis=1 按行排序
  • kind: 默认为'quicksort'(快速排序)
  • order: 如果数组包含字段,则是要排序的字段

实例

import numpy as np a = np.array([[3,7],[9,1]]) print ('我们的数组是:') print (a) print ('\n') print ('调用 sort() 函数:') print (np.sort(a)) print ('\n') print ('按列排序:') print (np.sort(a, axis = 0)) print ('\n') # 在 sort 函数中排序字段 dt = np.dtype([('name', 'S10'),('age', int)]) a = np.array([("raju",21),("anil",25),("ravi", 17), ("amar",27)], dtype = dt) print ('我们的数组是:') print (a) print ('\n') print ('按 name 排序:') print (np.sort(a, order = 'name'))

输出结果为:

我们的数组是:
[[3 7]
[9 1]] 调用 sort() 函数:
[[3 7]
[1 9]] 按列排序:
[[3 1]
[9 7]] 我们的数组是:
[(b'raju', 21) (b'anil', 25) (b'ravi', 17) (b'amar', 27)] 按 name 排序:
[(b'amar', 27) (b'anil', 25) (b'raju', 21) (b'ravi', 17)]

numpy.argsort()

numpy.argsort() 函数返回的是数组值从小到大的索引值。

实例

import numpy as np x = np.array([3, 1, 2]) print ('我们的数组是:') print (x) print ('\n') print ('对 x 调用 argsort() 函数:') y = np.argsort(x) print (y) print ('\n') print ('以排序后的顺序重构原数组:') print (x[y]) print ('\n') print ('使用循环重构原数组:') for i in y: print (x[i], end=" ")

输出结果为:

我们的数组是:
[3 1 2] 对 x 调用 argsort() 函数:
[1 2 0] 以排序后的顺序重构原数组:
[1 2 3] 使用循环重构原数组 1 2 3

numpy.lexsort()

numpy.lexsort() 用于对多个序列进行排序。把它想象成对电子表格进行排序,每一列代表一个序列,排序时优先照顾靠后的列。

这里举一个应用场景:小升初考试,重点班录取学生按照总成绩录取。在总成绩相同时,数学成绩高的优先录取,在总成绩和数学成绩都相同时,按照英语成绩录取…… 这里,总成绩排在电子表格的最后一列,数学成绩在倒数第二列,英语成绩在倒数第三列。

实例

import numpy as np nm = ('raju','anil','ravi','amar') dv = ('f.y.', 's.y.', 's.y.', 'f.y.') ind = np.lexsort((dv,nm)) print ('调用 lexsort() 函数:') print (ind) print ('\n') print ('使用这个索引来获取排序后的数据:') print ([nm[i] + ", " + dv[i] for i in ind])

输出结果为:

调用 lexsort() 函数:
[3 1 0 2] 使用这个索引来获取排序后的数据:
['amar, f.y.', 'anil, s.y.', 'raju, f.y.', 'ravi, s.y.']

上面传入 np.lexsort 的是一个tuple,排序时首先排 nm,顺序为:amar、anil、raju、ravi 。综上排序结果为 [3 1 0 2]。

msort、sort_complex、partition、argpartition

函数 描述
msort(a) 数组按第一个轴排序,返回排序后的数组副本。np.msort(a) 相等于 np.sort(a, axis=0)。
sort_complex(a) 对复数按照先实部后虚部的顺序进行排序。
partition(a, kth[, axis, kind, order]) 指定一个数,对数组进行分区
argpartition(a, kth[, axis, kind, order]) 可以通过关键字 kind 指定算法沿着指定轴对数组进行分区

复数排序:

>>> import numpy as np
>>> np.sort_complex([5, 3, 6, 2, 1])
array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j])
>>>
>>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j])
array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j])

partition() 分区排序:

>>> a = np.array([3, 4, 2, 1])
>>> np.partition(a, 3) # 将数组 a 中所有元素(包括重复元素)从小到大排列,比第3小的放在前面,大的放在后面
array([2, 1, 3, 4])
>>>
>>> np.partition(a, (1, 3)) # 小于 1 的在前面,大于 3 的在后面,1和3之间的在中间
array([1, 2, 3, 4])

找到数组的第 3 小(index=2)的值和第 2 大(index=-2)的值

>>> arr = np.array([46, 57, 23, 39, 1, 10, 0, 120])
>>> arr[np.argpartition(arr, 2)[2]]
10
>>> arr[np.argpartition(arr, -2)[-2]]
57

同时找到第 3 和第 4 小的值。注意这里,用 [2,3] 同时将第 3 和第 4 小的排序好,然后可以分别通过下标 [2] 和 [3] 取得。

>>> arr[np.argpartition(arr, [2,3])[2]]
10
>>> arr[np.argpartition(arr, [2,3])[3]]
23

numpy.argmax() 和 numpy.argmin()

numpy.argmax() 和 numpy.argmin()函数分别沿给定轴返回最大和最小元素的索引。

实例

import numpy as np a = np.array([[30,40,70],[80,20,10],[50,90,60]]) print ('我们的数组是:') print (a) print ('\n') print ('调用 argmax() 函数:') print (np.argmax(a)) print ('\n') print ('展开数组:') print (a.flatten()) print ('\n') print ('沿轴 0 的最大值索引:') maxindex = np.argmax(a, axis = 0) print (maxindex) print ('\n') print ('沿轴 1 的最大值索引:') maxindex = np.argmax(a, axis = 1) print (maxindex) print ('\n') print ('调用 argmin() 函数:') minindex = np.argmin(a) print (minindex) print ('\n') print ('展开数组中的最小值:') print (a.flatten()[minindex]) print ('\n') print ('沿轴 0 的最小值索引:') minindex = np.argmin(a, axis = 0) print (minindex) print ('\n') print ('沿轴 1 的最小值索引:') minindex = np.argmin(a, axis = 1) print (minindex)

输出结果为:

我们的数组是:
[[30 40 70]
[80 20 10]
[50 90 60]] 调用 argmax() 函数:
7 展开数组:
[30 40 70 80 20 10 50 90 60] 沿轴 0 的最大值索引:
[1 2 0] 沿轴 1 的最大值索引:
[2 0 1] 调用 argmin() 函数:
5 展开数组中的最小值:
10 沿轴 0 的最小值索引:
[0 1 1] 沿轴 1 的最小值索引:
[0 2 0]

numpy.nonzero()

numpy.nonzero() 函数返回输入数组中非零元素的索引。

实例

import numpy as np a = np.array([[30,40,0],[0,20,10],[50,0,60]]) print ('我们的数组是:') print (a) print ('\n') print ('调用 nonzero() 函数:') print (np.nonzero (a))

输出结果为:

我们的数组是:
[[30 40 0]
[ 0 20 10]
[50 0 60]] 调用 nonzero() 函数:
(array([0, 0, 1, 1, 2, 2]), array([0, 1, 1, 2, 0, 2]))

numpy.where()

numpy.where() 函数返回输入数组中满足给定条件的元素的索引。

实例

import numpy as np x = np.arange(9.).reshape(3, 3) print ('我们的数组是:') print (x) print ( '大于 3 的元素的索引:') y = np.where(x > 3) print (y) print ('使用这些索引来获取满足条件的元素:') print (x[y])

输出结果为:

我们的数组是:
[[0. 1. 2.]
[3. 4. 5.]
[6. 7. 8.]]
大于 3 的元素的索引:
(array([1, 1, 2, 2, 2]), array([1, 2, 0, 1, 2]))
使用这些索引来获取满足条件的元素:
[4. 5. 6. 7. 8.]

numpy.extract()

numpy.extract() 函数根据某个条件从数组中抽取元素,返回满条件的元素。

实例

import numpy as np x = np.arange(9.).reshape(3, 3) print ('我们的数组是:') print (x) # 定义条件, 选择偶数元素 condition = np.mod(x,2) == 0 print ('按元素的条件值:') print (condition) print ('使用条件提取元素:') print (np.extract(condition, x))

输出结果为:

我们的数组是:
[[0. 1. 2.]
[3. 4. 5.]
[6. 7. 8.]]
按元素的条件值:
[[ True False True]
[False True False]
[ True False True]]
使用条件提取元素:
[0. 2. 4. 6. 8.]

NumPy 排序、条件刷选函数的更多相关文章

  1. 15、numpy——排序、条件刷选函数

    NumPy 提供了多种排序的方法. 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性. 下表显示了三种排序算法的比较. 种类 速度 最坏情况 ...

  2. 吴裕雄--天生自然Numpy库学习笔记:NumPy 排序、条件刷选函数

    numpy.sort() 函数返回输入数组的排序副本.函数格式如下: numpy.sort(a, axis, kind, order) 参数说明: a: 要排序的数组 axis: 沿着它排序数组的轴, ...

  3. MVC3+EF4.1学习系列(三)-----排序 刷选 以及分页

    上篇文章 已经做出了基本的增删改查    但这远远不足以应付实际的项目  今天讲下实际项目中 肯定会有的 排序 刷选  以及分页. 重点想多写点分页的 毕竟这个是任何时候都要有的 而且 我会尽量把这个 ...

  4. NumPy排序、搜索和计数函数

    NumPy - 排序.搜索和计数函数 NumPy中提供了各种排序相关功能. 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性. 下表显示了三种 ...

  5. NumPy 排序、查找、计数

    章节 Numpy 介绍 Numpy 安装 NumPy ndarray NumPy 数据类型 NumPy 数组创建 NumPy 基于已有数据创建数组 NumPy 基于数值区间创建数组 NumPy 数组切 ...

  6. NumPy之:ndarray中的函数

    NumPy之:ndarray中的函数 目录 简介 简单函数 矢量化数组运算 条件逻辑表达式 统计方法 布尔数组 排序 文件 线性代数 随机数 简介 在NumPy中,多维数组除了基本的算数运算之外,还内 ...

  7. numpy中的arg系列函数

    numpy中的arg系列函数 觉得有用的话,欢迎一起讨论相互学习~Follow Me 不定期更新,现学现卖 numpy中arg系列函数被经常使用,通常先进行排序然后返回原数组特定的索引. argmax ...

  8. Python3:numpy模块中的argsort()函数

    Python3:numpy模块中的argsort()函数   argsort函数是Numpy模块中的函数: >>> import numpy >>> help(nu ...

  9. ormlite 在android中 排序 条件查询

    ormlite 在android中 排序 条件查询 all = dao.queryBuilder().orderBy("Id", true).where().eq("Ty ...

随机推荐

  1. PHP微信关注自动回复文本消息。

    服务器配置URL默认接受 $_GET["echostr"] 配置成功. public function GetShow(){ $token = $this->token; / ...

  2. pycharm使用技巧 + 调试程序-12

    Pycharm使用技巧 系出名门:JetBrains 集成开发环境:IDE 功能: Project视图.代码结构视图 代码导航 语法高亮.自动补齐.错误提示.自动修复 代码重构 主流开发框架的支持(D ...

  3. 关于 roadhog 2.0 版本之后不支持 cssModulesExclude

    cssModulesExclude 是用于 cssModules模块之后 ,解决不需要 cssModules 模块的样式文件, 了解 cssModules 看这里 https://segmentfau ...

  4. 通过指定的 url 去网络或者文件服务器下载文件到本地某个文件夹

    /** * 从网络Url中下载文件 * @param urlStr 指定的url * @param fileName 下载文件到本地的名字 * @param savePath 本地保存下载文件的路径 ...

  5. jetty 入门

    jetty因其能作为内嵌的应用服务器,随应用一起存在,在小批量应用中很受欢迎. jetty作为应用服务器: jetty下载: 在官网下载jetty:http://www.eclipse.org/jet ...

  6. Haskell语言学习笔记(92)HXT

    HXT The Haskell XML Toolbox (hxt) 是一个解析 XML 的库. $ cabal install hxt Installed hxt-9.3.1.16 Prelude&g ...

  7. MTIM(中间人攻击)

    所谓的MITM攻击就是通过拦截正常的网络通信数据,并进行数据篡改和嗅探,而通信的双方却毫不知情. 信息篡改 当主机A.和主机B通信时,都由主机C来为其“转发”,如图一,而A.B之间并没有真正意思上的直 ...

  8. 437. Path Sum III

    原题: 437. Path Sum III 解题: 思路1就是:以根节点开始遍历找到适合路径,以根节点的左孩子节点开始遍历,然后以根节点的右孩子节点开始遍历,不断循环,也就是以每个节点为起始遍历点 代 ...

  9. WebRequest + Https + 憑証錯誤 = 作業逾時

    前言 一般的系統一登入時,都會顯示公告訊息,我們的系統也是! 因為系統效能問題,所以就幫忙看了程式.發現,每次登入時,都會到DB取公告資料,但公告並不會因為個人而有所不同,是針對整個系統的呀! 所以就 ...

  10. KVM虚拟化技术(五)虚拟机管理

    一.为了提高内存.硬盘.网络的性能,需要支持半虚拟化:virtio半虚拟化驱动 二.对虚拟机的管理都是通过libvirt:所有必须要启用一个守护程序libvirtd. 三.virt-manager ① ...