题意:给你n个数字,对于任意s,s满足\(s=u_i+u_j+u_k,i<j<k\),要求出所有的s和对应满足条件的i,j,k的方案数

Solution:

构造一个函数:\(A(x)=\sum_{i=0}^{n-1}a_ix^i\),这是一个多项式

对于每一个\(u_i\),我们把这个多项式中的\(x^{u_i}\)的系数\(a_{u_i}\)加上一

也就是说,对于任意\(x^i\),它的系数为i在给出序列中出现的次数

多项式的三次方为:

\[C(x)=A(x)^3\\
C(x)=\sum_{i=0}^{3n}c_ix^i\\
c_i=\sum_{0\le l,j,k\le n,l+j+k=i}a_ja_ka_l
\]

在不考虑\(i<j<k\)的限制条件下,对于任意s,构成s的方案数就是\(C(x)\)中\(x^s\)的系数\(c_s\)

我们再来考虑容斥去重将不符合要求的方案给去掉

考虑当\(i,j,k\)中有两个数相同时,构建多项式:\(B(x)=\sum_{i=0}^{n-1}b_ix^i\)

其中对于任意\(x^i\),它的系数\(b_i\)为\(i/2(i\,mod\,2=0)\)在序列中出现的次数

则对于多项式:\(D(x)=A(x)B(x)\),它的系数就是两数相同的情况的方案数

在\(C(x)\)中它被多加了三次,但减去之后,我们显然可以发现我们将\(i=j=k\)的情况多减了一次

加上后,就得到了不考虑\(i<j<k\)时,\(i\ne j\ne k\)的所有方案数,此时再考虑\(i\le j\le k\),只需把方案数除以6就行了

Code:

#include<bits/stdc++.h>
#define ll long long
#define Pi acos(-1.0)
using namespace std;
const int N=1<<17;
int n,len,tim=17,rtt[N],c[N];
struct cp{double x,y;}aa[N],bb[N],cc[N];
cp operator + (cp a,cp b){return (cp){a.x+b.x,a.y+b.y};}
cp operator - (cp a,cp b){return (cp){a.x-b.x,a.y-b.y};}
cp operator * (cp a,cp b){return (cp){a.x*b.x-a.y*b.y,a.y*b.x+a.x*b.y};}
void FFT(cp *a,int flag){
for(int i=0;i<len;i++)
if(i<rtt[i]) swap(a[i],a[rtt[i]]);
for(int l=2;l<=len;l<<=1){
cp wn=(cp){cos(flag*2*Pi/l),sin(flag*2*Pi/l)};
for(int st=0;st<len;st+=l){
cp w=(cp){1,0};
for(int u=st;u<st+(l>>1);u++,w=w*wn){
cp x=a[u],y=w*a[u+(l>>1)];
a[u]=x+y,a[u+(l>>1)]=x-y;
}
}
}
}
int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
int main(){
n=read(),len=N;
for(int i=1;i<=n;i++){
int x=read()+20000;
aa[x].x=aa[x].x+1;
bb[x<<1].x=bb[x<<1].x+1;
c[x+x+x]++;
}
for(int i=0;i<len;i++)
rtt[i]=(rtt[i>>1]>>1)|((i&1)<<(tim-1));
FFT(aa,1);FFT(bb,1);
for(int i=0;i<len;i++)
cc[i]=aa[i]*(aa[i]*aa[i]-(cp){3,0}*bb[i]);
FFT(cc,-1);
for(int i=0;i<N;i++){
ll cnt=((ll){cc[i].x/len+0.5}+2*c[i])/6;
if(cnt) printf("%d : %lld\n",i-60000,cnt);
}
return 0;
}

Spoj 8372 Triple Sums的更多相关文章

  1. SPOJ TSUM Triple Sums(FFT + 容斥)

    题目 Source http://www.spoj.com/problems/TSUM/ Description You're given a sequence s of N distinct int ...

  2. SPOJ:Triple Sums(母函数+FFT)

    You're given a sequence s of N distinct integers.Consider all the possible sums of three integers fr ...

  3. spoj TSUM - Triple Sums fft+容斥

    题目链接 首先忽略 i < j < k这个条件.那么我们构造多项式$$A(x) = \sum_{1现在我们考虑容斥:1. $ (\sum_{}x)^3 = \sum_{}x^3 + 3\s ...

  4. 2018.11.18 spoj Triple Sums(容斥原理+fft)

    传送门 这次fftfftfft乱搞居然没有被卡常? 题目简述:给你nnn个数,每三个数ai,aj,ak(i<j<k)a_i,a_j,a_k(i<j<k)ai​,aj​,ak​( ...

  5. SPOJ Triple Sums(FFT+容斥原理)

    # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream& ...

  6. SPOJ - Triple Sums

    [传送门] FFT第一题! 构造多项式 $A(x) = \sum x ^ {s_i}$. 不考虑题目中 $i < j < k$ 的条件,那么 $A^3(x)$ 每一项对应的系数就是答案了. ...

  7. [SP8372-TSUM]Triple Sums

    题面在这里 description 某\(B\)姓\(OJ\)权限题 给出\(n\)个正整数\(a[i]\),求\(i<j<k\)且\(S=a[i]+a[j]+a[k]\)的三元组\((i ...

  8. spoj-TSUM Triple Sums

    题目描述 题解: 很吊的容斥+$FFT$,但是并不难. 首先,由于有重复,我们要容斥. 怎么办? 记录三个多项式, 只取一个:$w1$; 相同物体拿两个:$w2$; 相同物体拿三个:$w3$; 然后答 ...

  9. 多项式相关&&生成函数相关&&一些题目(updating...)

    文章目录 多项式的运算 多项式的加减法,数乘 多项式乘法 多项式求逆 多项式求导 多项式积分 多项式取对 多项式取exp 多项式开方 多项式的除法/取模 分治FFT 生成函数 相关题目 多项式的运算 ...

随机推荐

  1. 微服务RPC框架选美

    原文:http://p.primeton.com/articles/59030eeda6f2a40690f03629 1.RPC 框架谁最美? Hello,everybody!说到RPC框架,可能大家 ...

  2. python with原理

    在python2.5+中可以用with来保证关闭打开的文件 with open('hello.txt') as f: do some file operations 为什么要引入with呢? 在之前如 ...

  3. 20155209 林虹宇 Exp 8 Web基础

    Exp 8 Web基础 Web前端HTML 正常安装.启停Apache kali本机自带apache,上个实验已经使用过,直接使用 查看80端口. 127.0.0.1 编写一个含有表单的html 在浏 ...

  4. 20155232《网络对抗》 Exp1 PC平台逆向破解(5)M

    20155232<网络对抗> Exp1 PC平台逆向破解(5)M 实验内容 (1).掌握NOP, JNE, JE, JMP, CMP汇编指令的机器码(1分) (2)掌握反汇编与十六进制编程 ...

  5. 20155325 Exp9 Web安全基础

    本实践的目标理解常用网络攻击技术的基本原理.Webgoat实践下相关实验. 实验后回答问题 (1)SQL注入攻击原理,如何防御 原理:SQL注入即是指web应用程序对用户输入数据的合法性没有判断,攻击 ...

  6. WPF编程,通过Double Animation动态缩放控件的一种方法。

    原文:WPF编程,通过Double Animation动态缩放控件的一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/art ...

  7. MFC CTreeCtrl运用

    CTreeCtrl运用 删除无效资源 递归的运用 自写遍历目录函数 递归遍历所有子目录 一.删除无效资源 .打开资源文件 .找到无效链接删掉 二.自写遍历目录函数 CFileFind findfile ...

  8. 【LG3768】简单的数学题

    [LG3768]简单的数学题 题面 求 \[ (\sum_{i=1}^n\sum_{j=1}^nij\text{gcd}(i,j))\text{mod}p \] 其中\(n\leq 10^{10},5 ...

  9. 转 Git 常用命令大全

    一. Git 常用命令速查 git branch 查看本地所有分支 git status 查看当前状态  git commit 提交  git branch -a 查看所有的分支 git branch ...

  10. Magento 总结

    ZEND EAV 速度 作者:李淼链接:https://www.zhihu.com/question/20656910/answer/25793452来源:知乎著作权归作者所有.商业转载请联系作者获得 ...