原题戳我

Solution:

(部分复制Navi_Aswon博客

解释博客中的两个小地方:

\[\sum_{\left(S是G中y→x的一条路径的点集\right))}\prod_{2≤j≤n,(j∉S)}degree_j
\]

  • 因为加了\(x\)到\(y\)这条边出现了环,所以环上一定有一条边是从\(x\)连向\(y\),所以在没有这条边时,能从\(y\)连向\(x\)的方案都是不满足的。
  • 因此,上面这个式子就是找出了一条从\(y\)至\(x\)的路径后,连边的方案数。可以看作,\(y\)到\(x\)路径上的所有边都固定只连向环中的下一个点,所以方案数就是其他不在环上的点的入度乘积

\[f_i=\frac{∑\left(j→i\right)*f_j}{degree_i}
\]

  • 这个式子用\(degree\)总乘积除掉环路径上的点后的乘积之和,也就是不同环到这个点来后的方案和,所以最后\(f[x]\)就是所有存在环的方案数。注意的理解的点就是,\(f[ ]\)不是一个固定的环存在的不能满足方案数,而是所有环的情况方案数之和

  • 另外还用到了费马小定律求逆元,\(1e9+7\)是质数

是一道需要好好理解好好思考的题目


Code:

//It is coded by Ning_Mew on 3.17
#include<bits/stdc++.h>
#define LL long long using namespace std; const int maxn=1e5+7;
const int MOD=1e9+7; int n,m,x,y;
int head[maxn],cnt=0;
struct Edge{
int nxt,to;
}edge[2*maxn];
int degree[maxn],in[maxn];
LL ans=0,f[maxn]; void add(int from,int to){
edge[++cnt].nxt=head[from];
edge[cnt].to=to;
head[from]=cnt;
}
LL q_pow(int x,int k){
LL box=1ll*x,ans=1;
while(k){
if(k%2)ans=ans*box%MOD;
box=box*box%MOD;
k=k/2;
}return ans;
}
void topsort(){
queue<int>q;
while(!q.empty())q.pop();
for(int i=1;i<=n;i++){if(in[i]==0)q.push(i);}
while(!q.empty()){
int u=q.front();q.pop();
f[u]=f[u]*q_pow(degree[u],MOD-2)%MOD;
for(int i=head[u];i!=0;i=edge[i].nxt){
int v=edge[i].to;
in[v]--;f[v]=(f[v]+f[u])%MOD;
if(in[v]==0)q.push(v);
}
}return;
}
int main(){
scanf("%d%d%d%d",&n,&m,&x,&y);
degree[y]++;
for(int i=1;i<=m;i++){
int a,b;scanf("%d%d",&a,&b);
add(a,b);degree[b]++;
}
ans=1;
for(int i=2;i<=n;i++){
in[i]=degree[i];
ans=1ll*ans*degree[i]%MOD;
}
in[1]=degree[1];
in[y]--; f[y]=ans;
if(y!=1)topsort();
printf("%lld\n",(ans-f[x]+MOD)%MOD);
return 0;
}

【题解】 [HNOI2015]落忆枫音 (拓扑排序+dp+容斥原理)的更多相关文章

  1. bzoj4011 [HNOI2015]落忆枫音 拓扑排序+DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4011 题解 首先考虑如果没有那么一条被新加进来的奇怪的边的做法. 我们只需要给每一个点挑一个父 ...

  2. BZOJ 4011: [HNOI2015]落忆枫音( dp )

    DAG上有个环, 先按DAG计数(所有节点入度的乘积), 然后再减去按拓扑序dp求出的不合法方案数(形成环的方案数). ---------------------------------------- ...

  3. bzoj4011[HNOI2015]落忆枫音 dp+容斥(?)

    4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1125  Solved: 603[Submit][Statu ...

  4. [HNOI2015]落忆枫音 解题报告

    [HNOI2015]落忆枫音 设每个点入度是\(d_i\),如果不加边,答案是 \[ \prod_{i=2}^nd_i \] 意思是我们给每个点选一个父亲 然后我们加了一条边,最后如果还这么统计,那么 ...

  5. 4011: [HNOI2015]落忆枫音

    4011: [HNOI2015]落忆枫音 链接 分析: 原来是一个DAG,考虑如何构造树形图,显然可以给每个点找一个父节点,所以树形图的个数就是$\prod\limits_u deg[u]$. 那么加 ...

  6. 【bzoj4011】[HNOI2015]落忆枫音 容斥原理+拓扑排序+dp

    题目描述 给你一张 $n$ 个点 $m$ 条边的DAG,$1$ 号节点没有入边.再向这个DAG中加入边 $x\to y$ ,求形成的新图中以 $1$ 为根的外向树形图数目模 $10^9+7$ . 输入 ...

  7. [luogu3244 HNOI2015] 落忆枫音(容斥原理+拓扑排序)

    传送门 Description 给你一张 n 个点 m 条边的DAG,1 号节点没有入边.再向这个DAG中加入边 x→y ,求形成的新图中以 1 为根的外向树形图数 模 10^9+7 . Input ...

  8. 洛谷 P3244 / loj 2115 [HNOI2015] 落忆枫音 题解【拓扑排序】【组合】【逆元】

    组合计数的一道好题.什么非主流题目 题目背景 (背景冗长请到题目页面查看) 题目描述 不妨假设枫叶上有 \(n​\) 个穴位,穴位的编号为 \(1\sim n​\).有若干条有向的脉络连接着这些穴位. ...

  9. BZOJ4011:[HNOI2015]落忆枫音(DP,拓扑排序)

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也 ...

  10. BZOJ 4011: [HNOI2015]落忆枫音 计数 + 拓扑排序

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...

随机推荐

  1. php实现远程网络文件下载到服务器指定目录(方法二)

    <?php // maximum execution time in seconds set_time_limit (24 * 60 * 60); //if (!isset($_POST['su ...

  2. 02-Maven安装配置

    1.Maven下载 2.Maven依赖 3.安装Maven 4.Maven目录

  3. 使用selenium进行自动化测试

    selenium 支持多个客户端:ruby,Java,python.可以用来对网页进行全面测试,支持真实浏览器测试. firefox IE chrome safari 支持多操作系统: Linux w ...

  4. 20155202张旭《网络对抗技术》 week1 PC平台逆向破解及Bof基础实践

    20155202张旭<网络对抗技术> week1 PC平台逆向破解及Bof基础实践 1.实践目标: 实践对象:一个名为pwn1的linux可执行文件. 该程序正常执行流程是: main调用 ...

  5. tensorflow batch

    这两天一直在看tensorflow中的读取数据的队列,说实话,真的是很难懂.也可能我之前没这方面的经验吧,最早我都使用的theano,什么都是自己写.经过这两天的文档以及相关资料,并且请教了国内的师弟 ...

  6. AngularJS+bootstrap-switch 实现开关控件

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. 汇编 LEA 指令

    知识点:  LEA指令  &与LEA  OD里修改汇编代码 一.LEA指令格式 有效地址传送指令 LEA 格式: LEA 操作数A, 操作数B 功能: 将操作数B的有效地址传送到指定的的 ...

  8. [arc076F]Exhausted?[霍尔定理+线段树]

    题意 地上 \(1\) 到 \(m\) 个位置摆上椅子,有 \(n\) 个人要就座,每个人都有座位癖好:选择 \(\le L\) 或者 \(\ge R\) 的位置.问至少需要在两边添加多少个椅子能让所 ...

  9. Redis基本数据类型介绍笔记

    Redis 数据类型 Redis支持五种数据类型:string(字符串),hash(哈希),list(列表),set(集合)及zset(sorted set:有序集合). String(字符串) st ...

  10. 【中间件】Redis 实战之主从复制、高可用、分布式

    目录 简介 持久化 主从复制 高可用 Redis-Sentinel .NET Core开发 分布式 Redis-Cluster 配置说明 常见问题 简介 本节内容基于 CentOS 7.4.1708, ...