POJ2955(KB22-C 区间DP)
Brackets
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6
Source
//2017-05-22
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int dp[][];//dp[l][r]表示区间l-r中括号匹配数
//若位置l和r匹配,dp[l][r] = max(dp[l][r], dp[l+1][r-1]+2)
//否则,dp[l][r] = max(dp[l][r], dp[l][k]+dp[k+1][r] int main()
{
string str;
while(cin>>str)
{
if(str[] == 'e')break;
int n = str.length();
memset(dp, , sizeof(dp));
for(int len = ; len < n; len++){
for(int i = ; i+len < n; i++){
int j = i+len;
if((str[i] == '(' && str[j] == ')') || (str[i] == '[' && str[j] == ']'))dp[i][j] = max(dp[i][j], dp[i+][j-]+);
for(int k = i; k <= j; k++)
dp[i][j] = max(dp[i][j], dp[i][k]+dp[k+][j]);
}
}
cout<<dp[][n-]<<endl;
} return ;
}
POJ2955(KB22-C 区间DP)的更多相关文章
- poj2955括号匹配 区间DP
Brackets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5424 Accepted: 2909 Descript ...
- POJ2955:Brackets(区间DP)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- POJ2955 Brackets (区间DP)
很好的区间DP题. 需要注意第一种情况不管是否匹配,都要枚举k来更新答案,比如: "()()()":dp[0][5]=dp[1][4]+2=4,枚举k,k=1时,dp[0][1]+ ...
- POJ2955 Brackets(区间DP)
给一个括号序列,求有几个括号是匹配的. dp[i][j]表示序列[i,j]的匹配数 dp[i][j]=dp[i+1][j-1]+2(括号i和括号j匹配) dp[i][j]=max(dp[i][k]+d ...
- HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结
题意:给定一个字符串 输出回文子序列的个数 一个字符也算一个回文 很明显的区间dp 就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...
- POJ2955 Brackets —— 区间DP
题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS Memory Limit: 65536K Total Su ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
- poj2955 区间dp
//Accepted 200 KB 63 ms //区间dp //dp[i][j] 从i位到j位能得到的最大匹配数 //dp[i][j]=max(dp[i+1][j-1] (s[i-1]==s[j-1 ...
- poj2955:括号匹配,区间dp
题目大意: 给一个由,(,),[,]组成的字符串,其中(),[]可以匹配,求最大匹配数 题解:区间dp: dp[i][j]表示区间 [i,j]中的最大匹配数 初始状态 dp[i][i+1]=(i,i+ ...
- POJ2955【区间DP】
题目链接[http://poj.org/problem?id=2955] 题意:[].()的匹配问题,问一个[]()串中匹配的字符数,匹配方式为[X],(X),X为一个串,问一个长度为N(N<= ...
随机推荐
- Nmap命令的常用实例
一.Nmap简介 nmap是一个网络连接端扫描软件,用来扫描网上电脑开放的网络连接端.确定哪些服务运行在哪些连接端,并且推断计算机运行哪个操作系统(这是亦称 fingerprinting).它是网络管 ...
- 使用wget命令爬取整站
快速上手(整个bootstrap网页全被你抓取下来了~_~) wget -c -r -npH -k -nv http://www.baidu.com 参数说明 -c:断点续传 -r:递归下载 -np: ...
- ReactNatvie遇到的错误
1:新版的React包中没有包含PropTypes,如果使用需要从‘prop-types’包中导入. 2: 'prop-types'包中直接定义‘PropTypes.style’是无效的,需要使用‘P ...
- MySQL赋权
MySQL 赋予用户权限命令的简单格式可概括为:grant 权限 on 数据库对象 to 用户 一.grant 普通数据用户,查询.插入.更新.删除 数据库中所有表数据的权利.grant select ...
- python音乐播放器第二版
此代码是上一期的改版 需要用到的Python库有 .pygame 2.time 3.xmusic(我自己写的用来做音乐索引) .colorama(美观) 推荐使用pip安装 方法: pip ins ...
- FTP服务安装与端口说明
FTP服务安装与端口说明 FTP端口修改安装部署windowswindows 2012文件服务 1. FTP服务介绍 1.1 什么是FTP FTP(File Transfer Protocol)是文件 ...
- 多态、抽象类、接口_DAY09
1:多态(掌握) (1)多态概念:一种事物的多种形态 (2)体现:父类的引用指向其子类的实例对象;接口的引用指向其实现类的实例对象 (3)特点: 成员方法:编译看左边,运行看右边 运行:子类重写的方法 ...
- Deep Learning (中文版&英文版)
Bengio Yoshua,Ian J. Goodfellow 和 Aaron Courville共同撰写的<深度学习>(Deep Learning)是一本为了帮助学生及从业者入门机器学习 ...
- Windows下调试hadoop
1. 本地模式 本地模式下调试hadoop:下载winutils.exe和hadoop.dll hadoop.lib等windows的hadoop依赖文件放在D:\proc\hadoop\bin目 ...
- (转)shlex — 解析 Shell 风格语法
原文:https://pythoncaff.com/docs/pymotw/shlex-parse-shell-style-syntaxes/171 这是一篇协同翻译的文章,你可以点击『我来翻译』按钮 ...