POJ2955(KB22-C 区间DP)
Brackets
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6
Source
//2017-05-22
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int dp[][];//dp[l][r]表示区间l-r中括号匹配数
//若位置l和r匹配,dp[l][r] = max(dp[l][r], dp[l+1][r-1]+2)
//否则,dp[l][r] = max(dp[l][r], dp[l][k]+dp[k+1][r] int main()
{
string str;
while(cin>>str)
{
if(str[] == 'e')break;
int n = str.length();
memset(dp, , sizeof(dp));
for(int len = ; len < n; len++){
for(int i = ; i+len < n; i++){
int j = i+len;
if((str[i] == '(' && str[j] == ')') || (str[i] == '[' && str[j] == ']'))dp[i][j] = max(dp[i][j], dp[i+][j-]+);
for(int k = i; k <= j; k++)
dp[i][j] = max(dp[i][j], dp[i][k]+dp[k+][j]);
}
}
cout<<dp[][n-]<<endl;
} return ;
}
POJ2955(KB22-C 区间DP)的更多相关文章
- poj2955括号匹配 区间DP
Brackets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5424 Accepted: 2909 Descript ...
- POJ2955:Brackets(区间DP)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- POJ2955 Brackets (区间DP)
很好的区间DP题. 需要注意第一种情况不管是否匹配,都要枚举k来更新答案,比如: "()()()":dp[0][5]=dp[1][4]+2=4,枚举k,k=1时,dp[0][1]+ ...
- POJ2955 Brackets(区间DP)
给一个括号序列,求有几个括号是匹配的. dp[i][j]表示序列[i,j]的匹配数 dp[i][j]=dp[i+1][j-1]+2(括号i和括号j匹配) dp[i][j]=max(dp[i][k]+d ...
- HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结
题意:给定一个字符串 输出回文子序列的个数 一个字符也算一个回文 很明显的区间dp 就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...
- POJ2955 Brackets —— 区间DP
题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS Memory Limit: 65536K Total Su ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
- poj2955 区间dp
//Accepted 200 KB 63 ms //区间dp //dp[i][j] 从i位到j位能得到的最大匹配数 //dp[i][j]=max(dp[i+1][j-1] (s[i-1]==s[j-1 ...
- poj2955:括号匹配,区间dp
题目大意: 给一个由,(,),[,]组成的字符串,其中(),[]可以匹配,求最大匹配数 题解:区间dp: dp[i][j]表示区间 [i,j]中的最大匹配数 初始状态 dp[i][i+1]=(i,i+ ...
- POJ2955【区间DP】
题目链接[http://poj.org/problem?id=2955] 题意:[].()的匹配问题,问一个[]()串中匹配的字符数,匹配方式为[X],(X),X为一个串,问一个长度为N(N<= ...
随机推荐
- 输入URL地址到最终页面渲染完成,发生了什么事
1. 域名DNS解析 - 浏览器DNS缓存 - 系统DNS缓存 - 路由器DNS缓存 - 网络运营商DNS缓存 - 递归搜索...... 2. TCP连接: TCP三次握手 - 第一次握手,由浏览器发 ...
- [Swift]优先队列PriorityQueue(自定义数据结构)
优先队列[priority queue] 普通的队列是一种先进先出的数据结构,元素在队列尾追加,而从队列头删除. 优先队列特点:在优先队列中,元素被赋予优先级. 当访问元素时,具有最高优先级的元素最先 ...
- C#连接Access2013
今天测试连接Access2013数据库,遇到错误,综合几个大神建议,解决了 我的系统是windows 2008 64位的,连接字符串如下: <connectionStrings> < ...
- 多线程的实现及常用方法_DAY23
1:多线程(理解) (1)如果一个应用程序有多条执行路径,则被称为多线程程序. 进程:正在执行的程序. 线程:程序的执行路径,执行单元. 单线程:如果一个应用程序只有一条执行路径,则被称为单线程程序. ...
- (转) CentOS7.4 + MySQL8.0 + Git + Gogs搭建
原文:https://blog.csdn.net/qq_16075483/article/details/80295793 1.装系统,这个不会的下面就不用看了2.CentOS7.X安装MySQL8. ...
- JDK8 - Function介绍
注:写这个文档只是为了方便加深记忆,加强理解,重点关注两个default方法中泛型[V]. JDK8作为一个还在维护阶段的长期版本,势必会在企业应用中占据相当大的市场份额,所以还是以JDK8作为例子的 ...
- python垃圾回收
python垃圾回收 python垃圾回收主要使用引用计数来跟踪和回收垃圾.在引用计数的基础上,通过“标记—清除”解决容器对象可能产生的循环引用问题,通过“分代回收”以空间换时间的方法提高垃圾回收效率 ...
- CDN基本工作过程
看了一些介绍CDN的文章,感觉这篇是讲的最清楚的. 使用CDN会极大地简化网站的系统维护工作量,网站维护人员只需将网站内容注入CDN的系统,通过CDN部署在各个物理位置的服务器进行全网分发,就可以实现 ...
- JavaScript -- Document-open
-----045-Document-open.html----- <!DOCTYPE html> <html> <head> <meta http-equiv ...
- 【转】多线程:C#线程同步lock,Monitor,Mutex,同步事件和等待句柄(上)
本篇从Monitor,Mutex,ManualResetEvent,AutoResetEvent,WaitHandler的类关系图开始,希望通过 本篇的介绍能对常见的线程同步方法有一个整体的认识,而对 ...