SparkStreaming之window滑动窗口应用,Spark Streaming提供了滑动窗口操作的支持,从而让我们可以对一个滑动窗口内的数据执行计算操作。每次掉落在窗口内的RDD的数据,会被聚合起来执行计算操作,然后生成的RDD,会作为window DStream的一个RDD。

网官图中所示,就是对每三秒钟的数据执行一次滑动窗口计算,这3秒内的3个RDD会被聚合起来进行处理,然后过了两秒钟,又会对最近三秒内的数据执行滑动窗口计算。所以每个滑动窗口操作,都必须指定两个参数,窗口长度以及滑动间隔,而且这两个参数值都必须是batch间隔的整数倍。

Spark Streaming对滑动窗口的支持,是比Storm更加完善和强大的。

之前有些朋友问:

spark官网图片中: 滑动窗口宽度是3个时间单位,滑动时间是2两个单位,这样的话中间time3的Dstream不是重复计算了吗?

Answer:比如下面这个例子是针对热搜的应用场景,官方的例子也可能是是针对不同的场景给出了的。如果你不想出现重叠的部分,把滑动间隔由2改成3即可

SparkStreaming对滑动窗口支持的转换操作:

示例讲解:

1、window(windowLength, slideInterval)
  该操作由一个DStream对象调用,传入一个窗口长度参数,一个窗口移动速率参数,然后将当前时刻当前长度窗口中的元素取出形成一个新的DStream。
  下面的代码以长度为3,移动速率为1截取源DStream中的元素形成新的DStream。
val windowWords = words.window(Seconds( 3 ), Seconds( 1))

基本上每秒输入一个字母,然后取出当前时刻3秒这个长度中的所有元素,打印出来。从上面的截图中可以看到,下一秒时已经看不到a了,再下一秒,已经看不到b和c了。表示a, b, c已经不在当前的窗口中。

2、 countByWindow(windowLength,slideInterval)

  返回指定长度窗口中的元素个数。
  代码如下,统计当前3秒长度的时间窗口的DStream中元素的个数:
val windowWords = words.countByWindow(Seconds( 3 ), Seconds( 1))

3、 reduceByWindow(func, windowLength,slideInterval)
  类似于上面的reduce操作,只不过这里不再是对整个调用DStream进行reduce操作,而是在调用DStream上首先取窗口函数的元素形成新的DStream,然后在窗口元素形成的DStream上进行reduce。

val windowWords = words.reduceByWindow(_ + "-" + _, Seconds( 3) , Seconds( 1 ))

4、 reduceByKeyAndWindow(func,windowLength, slideInterval, [numTasks])
  调用该操作的DStream中的元素格式为(k, v),整个操作类似于前面的reduceByKey,只不过对应的数据源不同,reduceByKeyAndWindow的数据源是基于该DStream的窗口长度中的所有数据。该操作也有一个可选的并发数参数。
  下面代码中,将当前长度为3的时间窗口中的所有数据元素根据key进行合并,统计当前3秒中内不同单词出现的次数。
val windowWords = pairs.reduceByKeyAndWindow((a:Int , b:Int) => (a + b) , Seconds(3 ) , Seconds( 1 ))

5、 reduceByKeyAndWindow(func, invFunc,windowLength, slideInterval, [numTasks])
  这个窗口操作和上一个的区别是多传入一个函数invFunc。前面的func作用和上一个reduceByKeyAndWindow相同,后面的invFunc是用于处理流出rdd的。
  在下面这个例子中,如果把3秒的时间窗口当成一个池塘,池塘每一秒都会有鱼游进或者游出,那么第一个函数表示每由进来一条鱼,就在该类鱼的数量上累加。而第二个函数是,每由出去一条鱼,就将该鱼的总数减去一。
val windowWords = pairs.reduceByKeyAndWindow((a: Int, b:Int ) => (a + b) , (a:Int, b: Int) => (a - b) , Seconds( 3 ), Seconds( 1 ))

下面是演示结果,最终的结果是该3秒长度的窗口中历史上出现过的所有不同单词个数都为0。

一段时间不输入任何信息,看一下最终结果

 
6、 countByValueAndWindow(windowLength,slideInterval, [numTasks])
  类似于前面的countByValue操作,调用该操作的DStream数据格式为(K, v),返回的DStream格式为(K, Long)。统计当前时间窗口中元素值相同的元素的个数。

val windowWords = words.countByValueAndWindow(Seconds( 3 ), Seconds( 1))

 
 

示例二:热点搜索词滑动统计,每隔10秒钟,统计最近60秒钟的搜索词的搜索频次,并打印出排名最靠前的3个搜索词以及出现次数

Scala版本:

package com.spark.streaming  

import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.SparkConf /**
* @author Ganymede
*/
object WindowHotWordS {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("WindowHotWordS").setMaster("local[2]") //Scala中,创建的是StreamingContext
val ssc = new StreamingContext(conf, Seconds(5)) val searchLogsDStream = ssc.socketTextStream("spark1", 9999) val searchWordsDStream = searchLogsDStream.map { searchLog => searchLog.split(" ")(1) } val searchWordPairDStream = searchWordsDStream.map { searchWord => (searchWord, 1) } // reduceByKeyAndWindow
// 第二个参数,是窗口长度,这是是60秒
// 第三个参数,是滑动间隔,这里是10秒
// 也就是说,每隔10秒钟,将最近60秒的数据,作为一个窗口,进行内部的RDD的聚合,然后统一对一个RDD进行后续计算
// 而是只是放在那里
// 然后,等待我们的滑动间隔到了以后,10秒到了,会将之前60秒的RDD,因为一个batch间隔是5秒,所以之前60秒,就有12个RDD,给聚合起来,然后统一执行reduceByKey操作
// 所以这里的reduceByKeyAndWindow,是针对每个窗口执行计算的,而不是针对 某个DStream中的RDD
// 每隔10秒钟,出来 之前60秒的收集到的单词的统计次数
val searchWordCountsDStream = searchWordPairDStream.reduceByKeyAndWindow((v1: Int, v2: Int) => v1 + v2, Seconds(60), Seconds(10)) val finalDStream = searchWordCountsDStream.transform(searchWordCountsRDD => {
val countSearchWordsRDD = searchWordCountsRDD.map(tuple => (tuple._2, tuple._1))
val sortedCountSearchWordsRDD = countSearchWordsRDD.sortByKey(false)
val sortedSearchWordCountsRDD = sortedCountSearchWordsRDD.map(tuple => (tuple._1, tuple._2))
val top3SearchWordCounts = sortedSearchWordCountsRDD.take(3) for (tuple <- top3SearchWordCounts) {
println("result : " + tuple)
} searchWordCountsRDD
}) finalDStream.print() ssc.start()
ssc.awaitTermination()
}
}

Spark Streaming之五:Window窗体相关操作的更多相关文章

  1. c# 窗体相关操作(最大化/最小化/关闭/标题栏)

    /// <summary> /// 窗体跟随鼠标移动的标记 /// </summary> private bool normalmoving = false; /// < ...

  2. EXTJS 4.2 资料 控件之Window窗体相关属性的用法

    最大化,最小化,是否显示关闭按钮 var win_CommonPicLibMultiple = Ext.create("Ext.window.Window", { title: & ...

  3. 禁用,移除 WPF window窗体系统操作SystemMenu

    public static class SystemMenuManager { [DllImport("user32.dll", EntryPoint = "GetSys ...

  4. Spark Streaming之一:整体介绍

    提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处理可 ...

  5. 57、Spark Streaming: window滑动窗口以及热点搜索词滑动统计案例

    一.window滑动窗口 1.概述 Spark Streaming提供了滑动窗口操作的支持,从而让我们可以对一个滑动窗口内的数据执行计算操作.每次掉落在窗口内的RDD的数据, 会被聚合起来执行计算操作 ...

  6. Spark Streaming源码解读之生成全生命周期彻底研究与思考

    本期内容 : DStream与RDD关系彻底研究 Streaming中RDD的生成彻底研究 问题的提出 : 1. RDD是怎么生成的,依靠什么生成 2.执行时是否与Spark Core上的RDD执行有 ...

  7. Apache 流框架 Flink,Spark Streaming,Storm对比分析(二)

    本文由  网易云发布. 本文内容接上一篇Apache 流框架 Flink,Spark Streaming,Storm对比分析(一) 2.Spark Streaming架构及特性分析 2.1 基本架构 ...

  8. spark第六篇:Spark Streaming Programming Guide

    预览 Spark Streaming是Spark核心API的扩展,支持高扩展,高吞吐量,实时数据流的容错流处理.数据可以从Kafka,Flume或TCP socket等许多来源获取,并且可以使用复杂的 ...

  9. Apache 流框架 Flink,Spark Streaming,Storm对比分析(2)

    此文已由作者岳猛授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 2.Spark Streaming架构及特性分析 2.1 基本架构 基于是spark core的spark s ...

随机推荐

  1. [UGUI]图文混排(一):标签制定和解析

    参考链接: https://github.com/SylarLi/RichText/tree/master/Assets/Scripts 正则表达式: https://blog.csdn.net/ly ...

  2. 8.2.优化SQL语句

    8.2.优化SQL语句 数据库应用程序核心操作逻辑都是通过执行SQL语句来执行,不管是直接通过解释器还是通过后台API提交. 调优手册里面的这一节内容帮助各种各样MySQL程序加快速度.手册包括SQL ...

  3. 55.纯 CSS 创作一个太阳、地球、月亮的运转模型

    原文地址:https://segmentfault.com/a/1190000015313341 感想:主要运用边框.伪元素.动画. HTML code: <div class="co ...

  4. 使用Quartz框架定时发送预警邮件

    1.  Quartz定时发送预警邮件 1.1.   需求及实现思路 定时查询库存预警信息,一旦存在库存预警的商品,则发邮件通知相关人员 1.2.   Quartz框架 Quartz是OpenSymph ...

  5. win10 死机 无响应

    win10 死机 无响应 用着用着无响应,结束任务出不来,ctrl+alt+delete  无效. 点 窗口的关闭关闭不了. 鼠标键盘无响应. 写的代码变成乱码,影响太严重了,损失惨重. 紧急启动 c ...

  6. WebService与RESTful WebService

    Manual Instruction Document Web Service JAX-WS & JAX-RS Author: Liu Xiang Date: 2018/01/12 1. Su ...

  7. 机器学习入门-数值特征-进行二值化变化 1.Binarizer(进行数据的二值化操作)

    函数说明: 1. Binarizer(threshold=0.9) 将数据进行二值化,threshold表示大于0.9的数据为1,小于0.9的数据为0 对于一些数值型的特征:存在0还有其他的一些数 二 ...

  8. ncnn 源码学习-Mat.h Mat.c

    纯小白记录下腾讯的ncnn框架源码的学习.纯粹写给自己看的,不保证正确性. Mat 类似于 caffe中的blob,是一个张量的存储结构体. 一.数据成员: 1.void * data 多维数据按一位 ...

  9. sping IOC和DI 初始化和关系

    springIOC和spring DI作为spring core的核心思想,有必要学习下才能更好的使用spring ========================================== ...

  10. jquery 设计的扩展---初级

    1. 写一个构造函数G,调用G 时,返回G上的fn 对象的init() 的实例 2.设置G.fn 的指向,使用G.fn 与G.prototype指向同一个对象 2.1 重写G.prototype 对象 ...