实战--利用SVM对基因表达标本是否癌变的预测
利用支持向量机对基因表达标本是否癌变的预测
As we mentioned earlier, gene expression analysis has a wide variety of applications, including cancer studies. In 1999, Uri Alon analyzed gene expression data for 2,000 genes from 40 colon tumor tissues and compared them with data from colon tissues belonging to 21 healthy individuals, all measured at a single time point. We can represent his data as a 2,000 × 61 gene expression matrix, where the first 40 columns describe tumor samples and the last 21 columns describe normal samples.
Now, suppose you performed a gene expression experiment with a colon sample from a new patient, corresponding to a 62nd column in an augmented gene expression matrix. Your goal is to predict whether this patient has a colon tumor. Since the partition of tissues into two clusters (tumor vs. healthy) is known in advance, it may seem that classifying the sample from a new patient is easy. Indeed, since each patient corresponds to a point in 2,000-dimensional space, we can compute the center of gravity of these points for the tumor sample and for the healthy sample. Afterwards, we can simply check which of the two centers of gravity is closer to the new tissue.
Alternatively, we could perform a blind analysis, pretending that we do not already know the classification of samples into cancerous vs. healthy, and analyze the resulting 2,000 x 62 expression matrix to divide the 62 samples into two clusters. If we obtain a cluster consisting predominantly of cancer tissues, this cluster may help us diagnose colon cancer.
Final Challenge: These approaches may seem straightforward, but it is unlikely that either of them will reliably diagnose the new patient. Why do you think this is? Given Alon’s 2,000 × 61 gene expression matrix and gene data from a new patient, derive a superior approach to evaluate whether this patient is likely to have a colon tumor.
一、原理
参见
https://www.cnblogs.com/dfcao/p/3462721.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
二、
数据:
问题分析:
这是一个分类问题,训练集有61个,特征量有2000个,如果利用高斯核函数的SVM会出现过拟合,故选择线性核函数
代码
from os.path import dirname
import numpy as np
import math
import random
import matplotlib.pyplot as plt
from sklearn import datasets, svm def Input():
X = []
Y = []
check_x=[]
check_y=[] dataset1 = open(dirname(__file__)+'colon_cancer.txt').read().strip().split('\n')
dataset1=[list(map(float,line.split()))[:] for line in dataset1]
X += dataset1[10:]
check_x += dataset1[:10]
Y += [1]*(len(dataset1)-10)
check_y += [1]*10 dataset2 = open(dirname(__file__)+'colon_healthy.txt').read().strip().split('\n')
dataset2=[list(map(float,line.split()))[:] for line in dataset2]
X += dataset2[5:]
check_x += dataset2[:5]
Y += [0]*(len(dataset2)-5)
check_y += [0]*5 dataset3 = open(dirname(__file__)+'colon_test.txt').read().strip().split('\n')
test_X = [list(map(float,line.split()))[:] for line in dataset3] return [X ,Y , test_X , check_x , check_y] if __name__ == '__main__':
INF = 999999 [X_train ,y_train , test_X,check_x, check_y] = Input() kernel = 'linear' # 线性核函数 clf = svm.SVC(kernel=kernel, gamma=10)
clf.fit(X_train,y_train) predict_for_ckeck = clf.predict(check_x)
cnt=0
for i in range(len(check_y)):
if check_y[i]==predict_for_ckeck[i]:
cnt+=1
print('Accuracy %.2f%%'%(cnt/len(check_y))) print(clf.predict(test_X))
Accuracy 87%
[0]
奇怪的是,只选择前20个基因进行分析,训练集预测正确率居然上升到90%
Accuracy 93%
[0]
实战--利用SVM对基因表达标本是否癌变的预测的更多相关文章
- 实战--利用HierarchicalClustering 进行基因表达聚类分析
利用建立分级树对酵母基因表达数据进行聚类分析 一.原理 根据基因表达数据,得出距离矩阵 ↓ 最初,每个点都是一个集合 每次选取距离最小的两个集合,将他们合并,然后更新这个新集合与其它点的距离 新集合与 ...
- 机器学习实战之SVM
一引言: 支持向量机这部分确实很多,想要真正的去理解它,不仅仅知道理论,还要进行相关的代码编写和测试,二者想和结合,才能更好的帮助我们理解SVM这一非常优秀的分类算法 支持向量机是一种二类分类算法,假 ...
- Weblogic CVE-2020-2551漏洞复现&CS实战利用
Weblogic CVE-2020-2551漏洞复现 Weblogic IIOP 反序列化 漏洞原理 https://www.anquanke.com/post/id/199227#h3-7 http ...
- Druid未授权访问实战利用
Druid未授权访问实战利用 最近身边的同学都开始挖src了,而且身边接触到的挖src的网友也是越来越多.作者也是在前几天开始了挖src之路.惊喜又遗憾的是第一次挖src就挖到了一家互联网公司的R ...
- opencv利用svm训练
]]]]]])rand2 = np.array([[]]]]]])label = np.array([[]]]]]]]]]]])data = np.vstack((rand1]]])pt_data = ...
- 实战--利用Lloyd算法进行酵母基因表达数据的聚类分析
背景:酵母会在一定的时期发生diauxic shift,有一些基因的表达上升,有一些基因表达被抑制,通过聚类算法,将基因表达的变化模式聚成6类. ORF Name R1.Ratio R2.Ratio ...
- 机器学习实战------利用logistics回归预测病马死亡率
大家好久不见,实战部分一直托更,很不好意思.本文实验数据与代码来自机器学习实战这本书,倾删. 一:前期代码准备 1.1数据预处理 还是一样,设置两个数组,前两个作为特征值,后一个作为标签.当然这是简单 ...
- 06机器学习实战之SVM
对偶的概念 https://blog.csdn.net/qq_34531825/article/details/52872819?locationNum=7&fps=1 拉格朗日乘子法.KKT ...
- 在opencv3中利用SVM进行图像目标检测和分类
采用鼠标事件,手动选择样本点,包括目标样本和背景样本.组成训练数据进行训练 1.主函数 #include "stdafx.h" #include "opencv2/ope ...
随机推荐
- thinkphp3.2集成QRcode生成二维码
一.下载QRcode源代码 https://sourceforge.net/projects/phpqrcode/files/releases/ 使用phpqrcode必须开启GD2扩展,phpqrc ...
- mongodb导入csv结构化数据
csv数据样本 "103238704","","-jmyuncker@aol.com-","-r4Vp5iL2VbM=-" ...
- Linux驱动之建立一个hello模块
目标:在开发板上执行insmod hello.ko能在控制台打印出hello init:接着执行rmmod会在控制台打印出hello exit 建立一个hello模块的步骤如下: 1.建立一个hell ...
- 关于sortedlist 中值的添加,删除,索引测试.
SortedList 类代表了一系列按照键来排序的键/值对,这些键值对可以通过键和索引来访问. 排序列表是数组和哈希表的组合.它包含一个可使用键或索引访问各项的列表.如果您使用索引访问各项,则它是一个 ...
- 织梦替换ueditor百度编辑器,支持图片水印 教程
1下载ueditor百度编辑器 2 把下载的zip解压得到ueditor文件夹,把解压到的ueditor文件夹扔进你网站的include文件夹去 3 打开 /include/inc/inc_fun_f ...
- (转)Android学习路线总结,绝对干货
一.前言 不知不觉自己已经做了几年开发了,由记得刚出来工作的时候感觉自己能牛逼,现在回想起来感觉好无知.懂的越多的时候你才会发现懂的越少. 如果你的知识是一个圆,当你的圆越大时,圆外面的世界也就越大. ...
- LibreOJ #2006. 「SCOI2015」小凸玩矩阵 二分答案+二分匹配
#2006. 「SCOI2015」小凸玩矩阵 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- 拍照一分钟,修图两小时,PS大神是这样修片的!
乌克兰有一个叫Viktoria Solidarnyh的美图艺术家,这个艺术家有一个特别的技能——P图,她P的图,水平真的非常赞...来感受一下.... 瞬间变成魔幻田园风... 编辑:千锋UI设计 ...
- jQuery操作(一)
基本语法:$(selector).action() 寻找元素(重要的选择器和筛选器) 一:选择器 1.1 基本选择器: $("*") $("#id") $(&q ...
- java通过接口扩展枚举
package com.hra.riskprice; import com.hra.riskprice.SysEnum.Factor_Type; import com.hra.riskprice.po ...