实战--利用SVM对基因表达标本是否癌变的预测
利用支持向量机对基因表达标本是否癌变的预测
As we mentioned earlier, gene expression analysis has a wide variety of applications, including cancer studies. In 1999, Uri Alon analyzed gene expression data for 2,000 genes from 40 colon tumor tissues and compared them with data from colon tissues belonging to 21 healthy individuals, all measured at a single time point. We can represent his data as a 2,000 × 61 gene expression matrix, where the first 40 columns describe tumor samples and the last 21 columns describe normal samples.
Now, suppose you performed a gene expression experiment with a colon sample from a new patient, corresponding to a 62nd column in an augmented gene expression matrix. Your goal is to predict whether this patient has a colon tumor. Since the partition of tissues into two clusters (tumor vs. healthy) is known in advance, it may seem that classifying the sample from a new patient is easy. Indeed, since each patient corresponds to a point in 2,000-dimensional space, we can compute the center of gravity of these points for the tumor sample and for the healthy sample. Afterwards, we can simply check which of the two centers of gravity is closer to the new tissue.
Alternatively, we could perform a blind analysis, pretending that we do not already know the classification of samples into cancerous vs. healthy, and analyze the resulting 2,000 x 62 expression matrix to divide the 62 samples into two clusters. If we obtain a cluster consisting predominantly of cancer tissues, this cluster may help us diagnose colon cancer.
Final Challenge: These approaches may seem straightforward, but it is unlikely that either of them will reliably diagnose the new patient. Why do you think this is? Given Alon’s 2,000 × 61 gene expression matrix and gene data from a new patient, derive a superior approach to evaluate whether this patient is likely to have a colon tumor.
一、原理
参见
https://www.cnblogs.com/dfcao/p/3462721.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
二、
数据:
问题分析:
这是一个分类问题,训练集有61个,特征量有2000个,如果利用高斯核函数的SVM会出现过拟合,故选择线性核函数
代码
from os.path import dirname
import numpy as np
import math
import random
import matplotlib.pyplot as plt
from sklearn import datasets, svm def Input():
X = []
Y = []
check_x=[]
check_y=[] dataset1 = open(dirname(__file__)+'colon_cancer.txt').read().strip().split('\n')
dataset1=[list(map(float,line.split()))[:] for line in dataset1]
X += dataset1[10:]
check_x += dataset1[:10]
Y += [1]*(len(dataset1)-10)
check_y += [1]*10 dataset2 = open(dirname(__file__)+'colon_healthy.txt').read().strip().split('\n')
dataset2=[list(map(float,line.split()))[:] for line in dataset2]
X += dataset2[5:]
check_x += dataset2[:5]
Y += [0]*(len(dataset2)-5)
check_y += [0]*5 dataset3 = open(dirname(__file__)+'colon_test.txt').read().strip().split('\n')
test_X = [list(map(float,line.split()))[:] for line in dataset3] return [X ,Y , test_X , check_x , check_y] if __name__ == '__main__':
INF = 999999 [X_train ,y_train , test_X,check_x, check_y] = Input() kernel = 'linear' # 线性核函数 clf = svm.SVC(kernel=kernel, gamma=10)
clf.fit(X_train,y_train) predict_for_ckeck = clf.predict(check_x)
cnt=0
for i in range(len(check_y)):
if check_y[i]==predict_for_ckeck[i]:
cnt+=1
print('Accuracy %.2f%%'%(cnt/len(check_y))) print(clf.predict(test_X))
Accuracy 87%
[0]
奇怪的是,只选择前20个基因进行分析,训练集预测正确率居然上升到90%
Accuracy 93%
[0]
实战--利用SVM对基因表达标本是否癌变的预测的更多相关文章
- 实战--利用HierarchicalClustering 进行基因表达聚类分析
利用建立分级树对酵母基因表达数据进行聚类分析 一.原理 根据基因表达数据,得出距离矩阵 ↓ 最初,每个点都是一个集合 每次选取距离最小的两个集合,将他们合并,然后更新这个新集合与其它点的距离 新集合与 ...
- 机器学习实战之SVM
一引言: 支持向量机这部分确实很多,想要真正的去理解它,不仅仅知道理论,还要进行相关的代码编写和测试,二者想和结合,才能更好的帮助我们理解SVM这一非常优秀的分类算法 支持向量机是一种二类分类算法,假 ...
- Weblogic CVE-2020-2551漏洞复现&CS实战利用
Weblogic CVE-2020-2551漏洞复现 Weblogic IIOP 反序列化 漏洞原理 https://www.anquanke.com/post/id/199227#h3-7 http ...
- Druid未授权访问实战利用
Druid未授权访问实战利用 最近身边的同学都开始挖src了,而且身边接触到的挖src的网友也是越来越多.作者也是在前几天开始了挖src之路.惊喜又遗憾的是第一次挖src就挖到了一家互联网公司的R ...
- opencv利用svm训练
]]]]]])rand2 = np.array([[]]]]]])label = np.array([[]]]]]]]]]]])data = np.vstack((rand1]]])pt_data = ...
- 实战--利用Lloyd算法进行酵母基因表达数据的聚类分析
背景:酵母会在一定的时期发生diauxic shift,有一些基因的表达上升,有一些基因表达被抑制,通过聚类算法,将基因表达的变化模式聚成6类. ORF Name R1.Ratio R2.Ratio ...
- 机器学习实战------利用logistics回归预测病马死亡率
大家好久不见,实战部分一直托更,很不好意思.本文实验数据与代码来自机器学习实战这本书,倾删. 一:前期代码准备 1.1数据预处理 还是一样,设置两个数组,前两个作为特征值,后一个作为标签.当然这是简单 ...
- 06机器学习实战之SVM
对偶的概念 https://blog.csdn.net/qq_34531825/article/details/52872819?locationNum=7&fps=1 拉格朗日乘子法.KKT ...
- 在opencv3中利用SVM进行图像目标检测和分类
采用鼠标事件,手动选择样本点,包括目标样本和背景样本.组成训练数据进行训练 1.主函数 #include "stdafx.h" #include "opencv2/ope ...
随机推荐
- Query to find the eligible indexes for rebuilding
Query to find the eligible indexes for rebuilding The following script can be used to determine whic ...
- sqlserver 分区排序之partition
例如:按照课程分组取各个课程最高成绩的记录,使用partition分区,然后按照成绩倒序排列,需要注意的是考虑到可能出现多个相同最高分,使用dense_rank来实现连续排序. 参考链接:https: ...
- 移动端页面返回,数据不刷新bug解决
一,当安卓和ios都有问题的时候 // a.html 设置刷新 检测缓存是否有标志 要是有就说明数据有变化 a.html跳转到b.html页面 window.addEventListener(&quo ...
- (转)无效的CurrentPageIndex 值。它必须大于等于0 且小于PageCount 解决方案
第一种: 当以某种条件来查询的时候 其中的结果是以一个结果为条件的datagrid分页 采用字查询到条件下加入如下代码: [c-sharp] view plaincopyprint? protecte ...
- hdu 5532 (LIS) Almost Sorted Array
http://acm.hdu.edu.cn/showproblem.php?pid=5532 题意大致是一组数中去掉一个数后问剩下的数是否构成非严格单调序列 正反各跑一遍最长非严格连续子序列,存在长度 ...
- PHP编程时的规范化命名
要想成为一名“合格”的程序员,就必须要有良好的编程习惯和规范,这样做的好处有很多,诸如:可以提高代码质量,提高程序的可维护性,提高开发速度和效率等.以下就简要的列出几条日常编写程序时大概要注意的一些“ ...
- mysql错误日志
cat /etc/my.cnf
- Python 之异常处理机制
python在程序运行出现错误时时有相应的反应机制 ,我们可以针对不同的错误做出不同的响应 list1 = ['a','b','c'] print(list1[4]) #>>>Ind ...
- SQL表两列取一列唯一值的记录
问下SQL表两列取一列唯一值的 A列 B列 C列 1001 AA 2012-01-02 1001 BB 2012-02-05 100 ...
- MVVM Light 笔记 - snippet
RelayCommand有8个,看似很多,其实就是几个变化的组合: 1.是否Generic 2. 执行是使用lambda表达式还是method 3.是否有CanExecute 这些都在源代码Snipp ...