实战--利用SVM对基因表达标本是否癌变的预测
利用支持向量机对基因表达标本是否癌变的预测
As we mentioned earlier, gene expression analysis has a wide variety of applications, including cancer studies. In 1999, Uri Alon analyzed gene expression data for 2,000 genes from 40 colon tumor tissues and compared them with data from colon tissues belonging to 21 healthy individuals, all measured at a single time point. We can represent his data as a 2,000 × 61 gene expression matrix, where the first 40 columns describe tumor samples and the last 21 columns describe normal samples.
Now, suppose you performed a gene expression experiment with a colon sample from a new patient, corresponding to a 62nd column in an augmented gene expression matrix. Your goal is to predict whether this patient has a colon tumor. Since the partition of tissues into two clusters (tumor vs. healthy) is known in advance, it may seem that classifying the sample from a new patient is easy. Indeed, since each patient corresponds to a point in 2,000-dimensional space, we can compute the center of gravity of these points for the tumor sample and for the healthy sample. Afterwards, we can simply check which of the two centers of gravity is closer to the new tissue.
Alternatively, we could perform a blind analysis, pretending that we do not already know the classification of samples into cancerous vs. healthy, and analyze the resulting 2,000 x 62 expression matrix to divide the 62 samples into two clusters. If we obtain a cluster consisting predominantly of cancer tissues, this cluster may help us diagnose colon cancer.
Final Challenge: These approaches may seem straightforward, but it is unlikely that either of them will reliably diagnose the new patient. Why do you think this is? Given Alon’s 2,000 × 61 gene expression matrix and gene data from a new patient, derive a superior approach to evaluate whether this patient is likely to have a colon tumor.
一、原理
参见
https://www.cnblogs.com/dfcao/p/3462721.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
二、
数据:
问题分析:
这是一个分类问题,训练集有61个,特征量有2000个,如果利用高斯核函数的SVM会出现过拟合,故选择线性核函数
代码
from os.path import dirname
import numpy as np
import math
import random
import matplotlib.pyplot as plt
from sklearn import datasets, svm def Input():
X = []
Y = []
check_x=[]
check_y=[] dataset1 = open(dirname(__file__)+'colon_cancer.txt').read().strip().split('\n')
dataset1=[list(map(float,line.split()))[:] for line in dataset1]
X += dataset1[10:]
check_x += dataset1[:10]
Y += [1]*(len(dataset1)-10)
check_y += [1]*10 dataset2 = open(dirname(__file__)+'colon_healthy.txt').read().strip().split('\n')
dataset2=[list(map(float,line.split()))[:] for line in dataset2]
X += dataset2[5:]
check_x += dataset2[:5]
Y += [0]*(len(dataset2)-5)
check_y += [0]*5 dataset3 = open(dirname(__file__)+'colon_test.txt').read().strip().split('\n')
test_X = [list(map(float,line.split()))[:] for line in dataset3] return [X ,Y , test_X , check_x , check_y] if __name__ == '__main__':
INF = 999999 [X_train ,y_train , test_X,check_x, check_y] = Input() kernel = 'linear' # 线性核函数 clf = svm.SVC(kernel=kernel, gamma=10)
clf.fit(X_train,y_train) predict_for_ckeck = clf.predict(check_x)
cnt=0
for i in range(len(check_y)):
if check_y[i]==predict_for_ckeck[i]:
cnt+=1
print('Accuracy %.2f%%'%(cnt/len(check_y))) print(clf.predict(test_X))
Accuracy 87%
[0]
奇怪的是,只选择前20个基因进行分析,训练集预测正确率居然上升到90%
Accuracy 93%
[0]
实战--利用SVM对基因表达标本是否癌变的预测的更多相关文章
- 实战--利用HierarchicalClustering 进行基因表达聚类分析
利用建立分级树对酵母基因表达数据进行聚类分析 一.原理 根据基因表达数据,得出距离矩阵 ↓ 最初,每个点都是一个集合 每次选取距离最小的两个集合,将他们合并,然后更新这个新集合与其它点的距离 新集合与 ...
- 机器学习实战之SVM
一引言: 支持向量机这部分确实很多,想要真正的去理解它,不仅仅知道理论,还要进行相关的代码编写和测试,二者想和结合,才能更好的帮助我们理解SVM这一非常优秀的分类算法 支持向量机是一种二类分类算法,假 ...
- Weblogic CVE-2020-2551漏洞复现&CS实战利用
Weblogic CVE-2020-2551漏洞复现 Weblogic IIOP 反序列化 漏洞原理 https://www.anquanke.com/post/id/199227#h3-7 http ...
- Druid未授权访问实战利用
Druid未授权访问实战利用 最近身边的同学都开始挖src了,而且身边接触到的挖src的网友也是越来越多.作者也是在前几天开始了挖src之路.惊喜又遗憾的是第一次挖src就挖到了一家互联网公司的R ...
- opencv利用svm训练
]]]]]])rand2 = np.array([[]]]]]])label = np.array([[]]]]]]]]]]])data = np.vstack((rand1]]])pt_data = ...
- 实战--利用Lloyd算法进行酵母基因表达数据的聚类分析
背景:酵母会在一定的时期发生diauxic shift,有一些基因的表达上升,有一些基因表达被抑制,通过聚类算法,将基因表达的变化模式聚成6类. ORF Name R1.Ratio R2.Ratio ...
- 机器学习实战------利用logistics回归预测病马死亡率
大家好久不见,实战部分一直托更,很不好意思.本文实验数据与代码来自机器学习实战这本书,倾删. 一:前期代码准备 1.1数据预处理 还是一样,设置两个数组,前两个作为特征值,后一个作为标签.当然这是简单 ...
- 06机器学习实战之SVM
对偶的概念 https://blog.csdn.net/qq_34531825/article/details/52872819?locationNum=7&fps=1 拉格朗日乘子法.KKT ...
- 在opencv3中利用SVM进行图像目标检测和分类
采用鼠标事件,手动选择样本点,包括目标样本和背景样本.组成训练数据进行训练 1.主函数 #include "stdafx.h" #include "opencv2/ope ...
随机推荐
- Sobel Derivatives
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html ...
- [z]Linux下压缩与解压
1.压缩命令: 命令格式:tar -zcvf 压缩文件名.tar.gz 被压缩文件名 可先切换到当前目录下.压缩文件名和被压缩文件名都可加入路径. 2.解压缩命令: 命令格式:tar -z ...
- Java的OOP三大特征之一——多态
OOP(面对对象)三大特征之一——多态 What:多态性是指允许不同类的对象对同一消息作出响应,多态性包括参数化多态性和包含多态性,多态性语言具有灵活.抽象.行为共享.代码共享的优势,很好的解决了应用 ...
- Tomcat的目录结构及部署应用程序
下载好的二进制的Tomcat,解压会看到7个目录,如下: bin 目录:Tomcat的脚本存放目录,如启动.关闭脚本等.其中 **.bat用于windows平台,**.sh用于Linux平台 conf ...
- [Spark]What's the difference between spark.sql.shuffle.partitions and spark.default.parallelism?
From the answer here, spark.sql.shuffle.partitions configures the number of partitions that are used ...
- 各种编译不通过xcode
2017-08-24 Apple Mach-O Linker (Id) Error Linker command failed with exit code 1 (use -v to see invo ...
- js 异步加载和同步加载
异步加载 异步加载也叫非阻塞模式加载,浏览器在下载js的同时,同时还会执行后续的页面处理.在script标签内,用js创建一个script元素并插入到document中,这种就是异步加载js文件了: ...
- 再读c++primer plus 005
对象和类: 1.类和结构的唯一区别是结构的默认访问类型是public,而类为private: 2.其定义位于类声明中的函数都将自动成为内联函数,也可以在类声明外定义成员函数,并使其成为内联函数,为此只 ...
- codeforces题目合集(持续更新中)
CF280CCF280CCF280C 期望dp CF364DCF364DCF364D 随机化算法 CF438DCF438DCF438D 线段树 CF948CCF948CCF948C 堆 CF961EC ...
- 苹果电脑thunderbolt连接两台电脑启动方法
thunderbolt:首先连接连台电脑 然后开启可以启动的电脑, 关闭无法启动的电脑. 接着 按一下法启动的电脑电源—> 然后按t键 会在另外一台可以启动的电脑上出现,无法启动电脑的磁盘. 就 ...