题目大意:给你 a , b , c , d , k 五个值 (题目说明了 你可以认为 a=c=1)  x 属于 [1,b] ,y属于[1,d]  让你求有多少对这样的 (x,y)满足gcd(x,y)==k。给你的时间是 3000 MS。   0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000

解题思路:因为  gcd(x,y)=k  那么,很显然 gcd(x / k,y / k)是等于 1 的(x,y 除了 k 一定没有其他的公因数)。那么,此时问题就可以转化为: x 属于 [1,b / k] ,y属于[1,d / k]  让你求有多少对这样的 (x,y)满足gcd(x,y)== 1 即x和y是互质的。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 100000;
//线性筛法求莫比乌斯函数
bool check[MAXN+10];
int prime[MAXN+10];
int mu[MAXN+10];
//递推
void mobius(ll mn)
{
mu[1]=1;
for(ll i=1;i<=mn;i++){
for(ll j=i+i;j<=mn;j+=i){
mu[j]-=mu[i];
}
}
}
int main()
{
ios::sync_with_stdio(false);
int n,a,b,d,c,k,bd,Case=1;
mobius(MAXN);
cin>>n;
while(n--)
{
cin>>a>>b>>c>>d>>k;
if(k==0){
printf("Case %d: 0\n",Case++);
continue;
}
b=b/k;
d=d/k;
bd = min(b,d);
ll ans1=0,ans2=0;
for(int i=1;i<=bd;i++)
ans1+=(ll)mu[i]*(b/i)*(d/i);
for(int i=1;i<=bd;i++)
ans2+=(ll)mu[i]*(bd/i)*(bd/i);
ll ans = ans1-ans2/2;
printf("Case %d: %lld\n",Case++,ans);
}
return 0;
}

hdu 1695 GCD 【莫比乌斯函数】的更多相关文章

  1. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  2. HDU 1695 GCD 莫比乌斯反演

    分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...

  3. hdu 1695 GCD 莫比乌斯

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. D - GCD HDU - 1695 -模板-莫比乌斯容斥

    D - GCD HDU - 1695 思路: 都 除以 k 后转化为  1-b/k    1-d/k中找互质的对数,但是需要去重一下  (x,y)  (y,x) 这种情况. 这种情况出现 x  ,y ...

  5. HDU 6053 TrickGCD 莫比乌斯函数/容斥/筛法

    题意:给出n个数$a[i]$,每个数可以变成不大于它的数,现问所有数的gcd大于1的方案数.其中$(n,a[i]<=1e5)$ 思路:鉴于a[i]不大,可以想到枚举gcd的值.考虑一个$gcd( ...

  6. HDU 6053 TrickGCD (莫比乌斯函数)

    题意:给一个序列A,要求构造序列B,使得 Bi <= Ai, gcd(Bi) > 1, 1 <= i <= n, 输出构造的方法数. 析:首先这个题直接暴力是不可能解决的,可以 ...

  7. [Luogu P2257] YY的GCD (莫比乌斯函数)

    题面 传送门:洛咕 Solution 推到自闭,我好菜啊 显然,这题让我们求: \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) 根 ...

  8. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

随机推荐

  1. GitHub上Markdown语法的高级应用

    高级语法格式 本篇的内容来源于Github使用高级格式写作.如果在观看时有什么问题,可以直接查阅源文件.另外需要说明的是Git对Markdown的支持增加了一些扩展功能,因此在Git上可以渲染的Mar ...

  2. angular2.0学习笔记7.echarts 地图(type:'map')slice undifined 出错问题

    在 项目\node_modules\echarts\lib\chart\map.js文件头部 ... ... require("../coord/geo/geoCreator"); ...

  3. PAT 1032 挖掘机技术哪家强(20)(有测试样例)

    1032 挖掘机技术哪家强(20)(20 分) 为了用事实说明挖掘机技术到底哪家强,PAT组织了一场挖掘机技能大赛.现请你根据比赛结果统计出技术最强的那个学校. 输入格式: 输入在第1行给出不超过10 ...

  4. ssm介绍

    1.Spring     Spring是一个开源框架,Spring是于2003 年兴起的一个轻量级的Java 开发框架,由Rod Johnson 在其著作Expert One-On-One J2EE ...

  5. centos vncviewer

    CentOS6.5 安装vncserver实现图形化访问   一. 安装gnome图形化桌面 #yum groupinstall -y "X Window System" #yum ...

  6. Android.HowToDesignPluginArchitectureInAndroidApp

    There is a tools called "dx", this tool can transfer Java Binary Code into Android Dalvik ...

  7. 转录组的组装Stingtie和Cufflinks

    转录组的组装Stingtie和Cufflinks Posted: 十月 18, 2017  Under: Transcriptomics  By Kai  no Comments 首先这两款软件都是用 ...

  8. from collections import namedtuple 使用

    from collections import namedtuple Point = namedtuple('Point', ['x', 'y'])#本质就是等价于 class Point(): # ...

  9. Proxmox Reset Root Password

    http://c-nergy.be/blog/?p=1777 Step 1 – Boot your Proxmox VE machine. In the boot menu screen, you s ...

  10. 【轻松前端之旅】<!DOCTYPE>标签

    前端学习,先学习HTML,CSS,Javascript HTML - HyperText Markup Language HTML-超文本标记语言,提供了一种标记网页内容的方法. 浏览器怎么知道如何显 ...