引言

  最近自学GRU神经网络,感觉真的不简单。为了能够快速跑完程序,给我的渣渣笔记本(GT650M)也安装了一个GPU版的tensorflow。顺便也更新了版本到了tensorflow-gpu 1.7。之前相关的程序代码依然兼容,可以运行。刚好遇到五一假期,一个人在实验室发霉,就顺便随手做了一下MNIST手写体数字的BP神经网络识别程序。做的比较简单,日后可能会扩充这一篇随笔,所以大概算是个草稿版。

正文

MNIST数据准备

  MNIST手写体数字识别,在人工智能中的地位有点像’hello world‘在编程中的地位,算是一个入门程序。从这个程序中其实可以扩展出很多tensorflow的使用方法。然而由于最近犯春困,就简单写一下。准备数据可以使用Google已经提供好的input_data.py文件。这里也一并提供一下源代码。

# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tensorflow.python.platform
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False, one_hot=False,
dtype=tf.float32):
"""Construct a DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`.
"""
dtype = tf.as_dtype(dtype).base_dtype
if dtype not in (tf.uint8, tf.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], (
'images.shape: %s labels.shape: %s' % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
if dtype == tf.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [
fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
def fake():
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
data_sets.train = fake()
data_sets.validation = fake()
data_sets.test = fake()
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
data_sets.validation = DataSet(validation_images, validation_labels,
dtype=dtype)
data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
return data_sets

  下载保存后,将input_data.py文件放入工程目录中,然后新建工程文件,使用以下两行代码,就可以完成整个MNIST数据的准备。

import input_data

mnist =  input_data.read_data_sets('MNIST_data/', one_hot=True)

  这样,就会自动下载好数据文件到工程目录下的‘/MNIST_data/’中。如果已经下载就会跳过下载,然后将train,valiation和test三个数据集保存在mnist变量之中。

神经网络的扩展

  这一部分,以后慢慢填补,现在就用最简单的BP实现,BP的内容可以参考上一篇随笔。

损失函数

  神经网络模型的效果以及优化的目标是通过损失函数来定义的。不同的优化目标就对应需要采用不同的损失函数。分类问题中,交叉熵是判断输出向量和期望的向量接近程度的一种指标。

  摸了

优化算法

  摸了

过拟合

  摸了

滑动平均模型

  摸了

模型保存

  摸了

作业

  完成手写体数字识别程序,并尽可能提高识别的准确率。

#-*- coding:utf-8 -*-
#The MNIST database of handwritten digits
#Author:Kai Z import tensorflow as tf
import numpy as np
import input_data #创建MNIST数据,存储于/MNIST_data目录下
#mnist.train mnist.test
mnist = input_data.read_data_sets('MNIST_data/', one_hot=True) #神经网络超参数
input_node = 784
output_node = 10
hide_node = 100
batch_size = 100
learning_rate = 1e-3
training_steps = 5000 x = tf.placeholder(tf.float32,[None,input_node])
y = tf.placeholder(tf.float32,[None,output_node]) hidden_weight = tf.Variable(tf.random_normal([input_node,hide_node],stddev = 1,seed = 1))
hidden_bias = tf.Variable(tf.zeros([1,hide_node],tf.float32))
output_weight = tf.Variable(tf.random_normal([hide_node,output_node],stddev = 1,seed = 1))
output_bias = tf.Variable(tf.zeros([1,output_node],tf.float32)) h = tf.nn.tanh(tf.matmul(x,hidden_weight)+hidden_bias)
y_pred = tf.nn.sigmoid(tf.matmul(h,output_weight)+output_bias) correct_predict = tf.equal(tf.argmax(y_pred,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_predict,tf.float32)) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y_pred,labels=tf.argmax(y,1))
cross_entropy_mean = tf.reduce_mean(cross_entropy) train_op = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy_mean)
init_op = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init_op) for i in range(training_steps):
input_batch,output_batch = mnist.train.next_batch(batch_size)
sess.run(train_op,feed_dict={x:input_batch,y:output_batch}) if i%100 == 0:
right_rate = sess.run(accuracy,feed_dict = {x:mnist.validation.images,y:mnist.validation.labels})
print('训练%d次后,训练正确率为百分之%f'%(i,right_rate*100))
right_rate = sess.run(accuracy,feed_dict = {x:mnist.test.images,y:mnist.test.labels})
print('训练%d次后,测试正确率为百分之%f'%(i,right_rate*100))

  最终,结果为,测试准确率达到了91%。仍然有改进的空间。

NO.3:自学tensorflow之路------MNIST识别,神经网络拓展的更多相关文章

  1. NO.1:自学tensorflow之路------神经网络背景知识

    引言 从本周,我将开始tensorflow的学习.手头只有一本<tensorflow:实战Google深度学习框架>,这本书对于tensorflow的入门有一定帮助.tensorflow中 ...

  2. NO.2:自学tensorflow之路------BP神经网络编程

    引言 在上一篇博客中,介绍了各种Python的第三方库的安装,本周将要使用Tensorflow完成第一个神经网络,BP神经网络的编写.由于之前已经介绍过了BP神经网络的内部结构,本文将直接介绍Tens ...

  3. TensorFlow下利用MNIST训练模型并识别自己手写的数字

    最近一直在学习李宏毅老师的机器学习视频教程,学到和神经网络那一块知识的时候,我觉得单纯的学习理论知识过于枯燥,就想着自己动手实现一些简单的Demo,毕竟实践是检验真理的唯一标准!!!但是网上很多的与t ...

  4. Tensorflow之基于MNIST手写识别的入门介绍

    Tensorflow是当下AI热潮下,最为受欢迎的开源框架.无论是从Github上的fork数量还是star数量,还是从支持的语音,开发资料,社区活跃度等多方面,他当之为superstar. 在前面介 ...

  5. TensorFlow技术解析与实战学习笔记(15)-----MNIST识别(LSTM)

    一.任务:采用基本的LSTM识别MNIST图片,将其分类成10个数字. 为了使用RNN来分类图片,将每张图片的行看成一个像素序列,因为MNIST图片的大小是28*28像素,所以我们把每一个图像样本看成 ...

  6. 使用Tensorflow和MNIST识别自己手写的数字

    #!/usr/bin/env python3 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data ...

  7. TensorFlow技术解析与实战学习笔记(13)------Mnist识别和卷积神经网络AlexNet

    一.AlexNet:共8层:5个卷积层(卷积+池化).3个全连接层,输出到softmax层,产生分类. 论文中lrn层推荐的参数:depth_radius = 4,bias = 1.0 , alpha ...

  8. TensorFlow+实战Google深度学习框架学习笔记(12)------Mnist识别和卷积神经网络LeNet

    一.卷积神经网络的简述 卷积神经网络将一个图像变窄变长.原本[长和宽较大,高较小]变成[长和宽较小,高增加] 卷积过程需要用到卷积核[二维的滑动窗口][过滤器],每个卷积核由n*m(长*宽)个小格组成 ...

  9. tensorflow学习之路-----MNIST数据

    ''' 神经网络的过程:1.准备相应的数据库 2.定义输入成 3.定义输出层 4.定义隐藏层 5.训练(根据误差进行训练) 6.对结果进行精确度评估 ''' import tensorflow as ...

随机推荐

  1. PHP中unset,array_splice删除数组中元素的区别

    php中删除数组元素是非常的简单的,但有时删除数组需要对索引进行一些排序要求我们会使用到相关的函数,这里我们来介绍使用unset,array_splice删除数组中的元素区别吧 如果要在某个数组中删除 ...

  2. MMIO----Wav格式文件解析

    DirectSound只支持Wav格式的音频文件,在创建次缓冲区之前需要先确定播放的Wav音频数据的格式.如果是从本地Wav文件播放,则需要先读出它的数据格式. 1. Wav音频格式布局 Wav是WA ...

  3. 远程登录Linux(window下操作Linux)

    参考文章:http://www.runoob.com/linux/linux-remote-login.html 1.Window系统上 Linux 远程登录客户端有SecureCRT, Putty, ...

  4. Spring Boot Actuator RCE

    来看一下IDEA如何调试Spring Boot 先在https://github.com/artsploit/actuator-testbed下载源码 如下命令就能通过maven环境启动 mvn in ...

  5. css里颜色的那些事儿(合法颜色值)

    css中主要有六种方法指定颜色: 1.十六进制颜色 2.RGB颜色 3.RGBA颜色 4.HSL色彩 5.HSLA颜色 6.预定义/跨浏览器的颜色名称 前三种是我们最常见的,也是用的最多的,而后三种对 ...

  6. bip39

    BIP: 39 (助记词) Layer: Applications Title: Mnemonic code for generating deterministic keys Author: Mar ...

  7. 安装 Autoconf, Automake & Libtool

    今天在使用sudo apt-get install命令安装autoconf和automake时,出现了问题,说是不能sudo apt-get install安装这些软件似乎不是最新的.由此,我通过搜索 ...

  8. ubuntu16.04之sudo问题

    问题描述: 我通过useradd test创建了test用户,并通过mkdir test创建了该用户对应的目录,再通过chown -R test /home/test将该目录及其子目录权限授予给tes ...

  9. javascript实现拖曳与拖放图片

    javascript实现拖曳与拖放图片 其实对于drag和drop拖曳与拖放事件IE很早以前就支持这个操作了,我们先来看看HTML5中新增的拖放API. 在HTML5中想要实现拖放操作,至少要做以下操 ...

  10. BT5R3蛋疼的metasploit升级

    刚装了BT5R3,急着想把metasploit升级,原版本是4.5.0,试了网上的各种方法,终于试到了个能成功的,再次记录一下. 系统环境:BT5 R3 1.apt-get update 2.apt- ...