引言

  最近自学GRU神经网络,感觉真的不简单。为了能够快速跑完程序,给我的渣渣笔记本(GT650M)也安装了一个GPU版的tensorflow。顺便也更新了版本到了tensorflow-gpu 1.7。之前相关的程序代码依然兼容,可以运行。刚好遇到五一假期,一个人在实验室发霉,就顺便随手做了一下MNIST手写体数字的BP神经网络识别程序。做的比较简单,日后可能会扩充这一篇随笔,所以大概算是个草稿版。

正文

MNIST数据准备

  MNIST手写体数字识别,在人工智能中的地位有点像’hello world‘在编程中的地位,算是一个入门程序。从这个程序中其实可以扩展出很多tensorflow的使用方法。然而由于最近犯春困,就简单写一下。准备数据可以使用Google已经提供好的input_data.py文件。这里也一并提供一下源代码。

# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tensorflow.python.platform
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False, one_hot=False,
dtype=tf.float32):
"""Construct a DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`.
"""
dtype = tf.as_dtype(dtype).base_dtype
if dtype not in (tf.uint8, tf.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], (
'images.shape: %s labels.shape: %s' % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
if dtype == tf.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [
fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
def fake():
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
data_sets.train = fake()
data_sets.validation = fake()
data_sets.test = fake()
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
data_sets.validation = DataSet(validation_images, validation_labels,
dtype=dtype)
data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
return data_sets

  下载保存后,将input_data.py文件放入工程目录中,然后新建工程文件,使用以下两行代码,就可以完成整个MNIST数据的准备。

import input_data

mnist =  input_data.read_data_sets('MNIST_data/', one_hot=True)

  这样,就会自动下载好数据文件到工程目录下的‘/MNIST_data/’中。如果已经下载就会跳过下载,然后将train,valiation和test三个数据集保存在mnist变量之中。

神经网络的扩展

  这一部分,以后慢慢填补,现在就用最简单的BP实现,BP的内容可以参考上一篇随笔。

损失函数

  神经网络模型的效果以及优化的目标是通过损失函数来定义的。不同的优化目标就对应需要采用不同的损失函数。分类问题中,交叉熵是判断输出向量和期望的向量接近程度的一种指标。

  摸了

优化算法

  摸了

过拟合

  摸了

滑动平均模型

  摸了

模型保存

  摸了

作业

  完成手写体数字识别程序,并尽可能提高识别的准确率。

#-*- coding:utf-8 -*-
#The MNIST database of handwritten digits
#Author:Kai Z import tensorflow as tf
import numpy as np
import input_data #创建MNIST数据,存储于/MNIST_data目录下
#mnist.train mnist.test
mnist = input_data.read_data_sets('MNIST_data/', one_hot=True) #神经网络超参数
input_node = 784
output_node = 10
hide_node = 100
batch_size = 100
learning_rate = 1e-3
training_steps = 5000 x = tf.placeholder(tf.float32,[None,input_node])
y = tf.placeholder(tf.float32,[None,output_node]) hidden_weight = tf.Variable(tf.random_normal([input_node,hide_node],stddev = 1,seed = 1))
hidden_bias = tf.Variable(tf.zeros([1,hide_node],tf.float32))
output_weight = tf.Variable(tf.random_normal([hide_node,output_node],stddev = 1,seed = 1))
output_bias = tf.Variable(tf.zeros([1,output_node],tf.float32)) h = tf.nn.tanh(tf.matmul(x,hidden_weight)+hidden_bias)
y_pred = tf.nn.sigmoid(tf.matmul(h,output_weight)+output_bias) correct_predict = tf.equal(tf.argmax(y_pred,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_predict,tf.float32)) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y_pred,labels=tf.argmax(y,1))
cross_entropy_mean = tf.reduce_mean(cross_entropy) train_op = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy_mean)
init_op = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init_op) for i in range(training_steps):
input_batch,output_batch = mnist.train.next_batch(batch_size)
sess.run(train_op,feed_dict={x:input_batch,y:output_batch}) if i%100 == 0:
right_rate = sess.run(accuracy,feed_dict = {x:mnist.validation.images,y:mnist.validation.labels})
print('训练%d次后,训练正确率为百分之%f'%(i,right_rate*100))
right_rate = sess.run(accuracy,feed_dict = {x:mnist.test.images,y:mnist.test.labels})
print('训练%d次后,测试正确率为百分之%f'%(i,right_rate*100))

  最终,结果为,测试准确率达到了91%。仍然有改进的空间。

NO.3:自学tensorflow之路------MNIST识别,神经网络拓展的更多相关文章

  1. NO.1:自学tensorflow之路------神经网络背景知识

    引言 从本周,我将开始tensorflow的学习.手头只有一本<tensorflow:实战Google深度学习框架>,这本书对于tensorflow的入门有一定帮助.tensorflow中 ...

  2. NO.2:自学tensorflow之路------BP神经网络编程

    引言 在上一篇博客中,介绍了各种Python的第三方库的安装,本周将要使用Tensorflow完成第一个神经网络,BP神经网络的编写.由于之前已经介绍过了BP神经网络的内部结构,本文将直接介绍Tens ...

  3. TensorFlow下利用MNIST训练模型并识别自己手写的数字

    最近一直在学习李宏毅老师的机器学习视频教程,学到和神经网络那一块知识的时候,我觉得单纯的学习理论知识过于枯燥,就想着自己动手实现一些简单的Demo,毕竟实践是检验真理的唯一标准!!!但是网上很多的与t ...

  4. Tensorflow之基于MNIST手写识别的入门介绍

    Tensorflow是当下AI热潮下,最为受欢迎的开源框架.无论是从Github上的fork数量还是star数量,还是从支持的语音,开发资料,社区活跃度等多方面,他当之为superstar. 在前面介 ...

  5. TensorFlow技术解析与实战学习笔记(15)-----MNIST识别(LSTM)

    一.任务:采用基本的LSTM识别MNIST图片,将其分类成10个数字. 为了使用RNN来分类图片,将每张图片的行看成一个像素序列,因为MNIST图片的大小是28*28像素,所以我们把每一个图像样本看成 ...

  6. 使用Tensorflow和MNIST识别自己手写的数字

    #!/usr/bin/env python3 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data ...

  7. TensorFlow技术解析与实战学习笔记(13)------Mnist识别和卷积神经网络AlexNet

    一.AlexNet:共8层:5个卷积层(卷积+池化).3个全连接层,输出到softmax层,产生分类. 论文中lrn层推荐的参数:depth_radius = 4,bias = 1.0 , alpha ...

  8. TensorFlow+实战Google深度学习框架学习笔记(12)------Mnist识别和卷积神经网络LeNet

    一.卷积神经网络的简述 卷积神经网络将一个图像变窄变长.原本[长和宽较大,高较小]变成[长和宽较小,高增加] 卷积过程需要用到卷积核[二维的滑动窗口][过滤器],每个卷积核由n*m(长*宽)个小格组成 ...

  9. tensorflow学习之路-----MNIST数据

    ''' 神经网络的过程:1.准备相应的数据库 2.定义输入成 3.定义输出层 4.定义隐藏层 5.训练(根据误差进行训练) 6.对结果进行精确度评估 ''' import tensorflow as ...

随机推荐

  1. VMware 导出镜像文件供 Virtual Box 使用

    1. 问题描述 Windows 系统安装的 VMware 里的安装配置好的虚拟机需要拷贝到 MAC 的 Virtual Box 中. 需要将 VMware 中的虚拟机导出为镜像文件供 Virtual ...

  2. Windows 软件推荐大全【all】

    FastStone: 视频下载王: IDE: FinalShell:   免费海外服务器远程桌面加速,ssh加速,双边tcp加速,内网穿透.FinalShell使用---Xshell的良心国产软件 P ...

  3. 【require.js】模块化开发

    一.Require.js及AMD Require.js:是一个非常小巧的JavaScript模块载入框架,是AMD规范最好的实现者之一. AMD(Asynchronous Module Definit ...

  4. vcenter server appliance(vcsa) 配置IP的方法

    方法一: vcenter server appliance 5.1 及以后版本包括5.5,在安装完毕后,console界面是没有网络配置项的,如果需要进行IP配置,可以login后,输入命令yast( ...

  5. 清理 Xcode 10

    1,清理 ~/Library/Developer/CoreSimulator/Devices说明:该目录存放当前的所有模拟器,每个标识符代表一台机器,清理掉避免存在旧版本的模拟器缓存 执行: 关闭模拟 ...

  6. selenium3 浏览器驱动下载及验证

    下载浏览器驱动 当selenium升级到3.0之后,对不同的浏览器驱动进行了规范.如果想使用selenium驱动不同的浏览器,必须单独下载并设置不同的浏览器驱动. 各浏览器下载地址: Firefox浏 ...

  7. [python]如何理解uiautomator里面的 instance 及使用场景

    通过uiautomatorviewer打开之后,需要通过对某个控件进行操作,但在当前界面中该控件所有属性无法唯一(其它控件属性也是一样),这个时候就需要借助实例(instance)来进行区分,inst ...

  8. css多种方法实现已知宽度和未知宽度的元素水平垂直居中

    // html <div class="box-wrapper"> <div class="box"> 内部box <p>更 ...

  9. postMessage 消息传递

    点击查看demo 前言 web开发了,除了前台与服务器交换数据,还有可能前台页面间需要进行数据传递,比如窗口间,页面和嵌套的iframe间.这些问题之前都有解决办法,但是现在html5引入的messa ...

  10. 【Java集合源代码剖析】ArrayList源代码剖析

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/mmc_maodun/article/details/35568011 转载请注明出处:http:// ...