Description

  对于一个n*m的地图,每个格子有五种可能:平地,障碍物,出口,入口和神器。一个有效的地图必须满足下列条件:

  1.入口,出口和神器都有且仅出现一次,并且不在同一个格子内。

  2.入口,出口和神器两两都是连通的。

  连通性判断为四连通。

  现在给出一个n*m的地图,其中一些格子的状态已经确定,另一些格子的状态未确定。

  问当所有的格子状态确定之后,有多少种情况使得该地图是一个有效的地图?输出结构为答案模1e9+7。

Input

  第一行输入两个整数n和m,意义如题目所示。接下来n行,每行m个字符:

  字符'.'表示平地

  字符'#'表示障碍物

  字符'?'表示未确定

  字符'S'表示入口

  字符'X'表示神器

  字符'E'表示出口

Output

  一行,表示方案数

Sample Input

  2 3

  S#E

  ???

Sample Output

  3

HINT

  对于30%的数据,?数量小于10

  对于100%的数据,1<=n<=7,1<=m<=7

Solution

  这是一道类插头DP的题目,做法与插头DP类似。

  对于'?',我们可以枚举情况;而对于其他已经确定了的状态,可以直接按格DP。

  状态只需记录格子所在的连通块,并在最后记录入口,出口和神器所在的连通块,HASH存。

Code

 #include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm> using namespace std; #define REP(i, a, b) for (int i = (a), i##_end_ = (b); i <= i##_end_; ++i)
#define DWN(i, a, b) for (int i = (a), i##_end_ = (b); i >= i##_end_; --i)
#define mset(a, b) memset(a, b, sizeof(a))
typedef long long LL;
const int MAXD = , HASH = , STATE = , MOD = 1e9+;
int n, m, code[MAXD], ch[MAXD], x[], y[];
char maze[MAXD][MAXD], sp[] = {'S', 'X', 'E', '.', '#'}; void add(LL &x, LL y) { x += y; if (x >= MOD) x -= MOD; } struct HASHMAP
{
int head[HASH], nxt[STATE], siz; LL state[STATE], f[STATE];
void clear() { siz = , mset(head, -); }
void push(LL x, LL k)
{
int pos = x%HASH, i = head[pos];
for (; i != -; i = nxt[i])
if (state[i] == x) { add(f[i], k); return ; }
state[siz] = x, f[siz] = k;
nxt[siz] = head[pos], head[pos] = siz++;
}
}hm[]; void in()
{
scanf("%d %d", &n, &m);
mset(x, -), mset(y, -);
REP(i, , n)
{
scanf("%s", maze[i]+);
REP(j, , m)
{
if (maze[i][j] == 'S') x[] = i, y[] = j;
else if (maze[i][j] == 'X') x[] = i, y[] = j;
else if (maze[i][j] == 'E') x[] = i, y[] = j;
}
}
} bool check(int i, int j)
{
if (maze[i][j] == 'S' && code[m+]) return ;
else if (maze[i][j] == 'X' && code[m+]) return ;
else if (maze[i][j] == 'E' && code[m+]) return ;
else return ;
} void decode(LL x)
{
REP(i, , m+) code[i] = x&, x >>= ;
} LL encode(int i, int j)
{
if (maze[i][j] == 'S') code[m+] = code[j];
else if (maze[i][j] == 'X') code[m+] = code[j];
else if (maze[i][j] == 'E') code[m+] = code[j];
LL ret = ; int cnt = ;
mset(ch, -), ch[] = ;
DWN(t, m+, )
{
if (ch[code[t]] == -) ch[code[t]] = ++cnt;
ret <<= , ret |= ch[code[t]];
}
return ret;
} void dp_blank(int i, int j, int cur)
{
REP(k, , hm[cur].siz-)
{
decode(hm[cur].state[k]);
if (check(i, j)) continue ;
int lef = code[j-], up = code[j], id = ;
if (lef) id = min(id, lef);
if (up) id = min(id, up);
if (lef)
REP(t, , m+) if (code[t] == lef) code[t] = id;
if (up)
REP(t, , m+) if (code[t] == up) code[t] = id;
code[j] = id;
hm[cur^].push(encode(i, j), hm[cur].f[k]);
}
} void dp_block(int i, int j, int cur)
{
REP(k, , hm[cur].siz-)
{
decode(hm[cur].state[k]), code[j] = ;
hm[cur^].push(encode(i, j), hm[cur].f[k]);
}
} void work()
{
int cur = ; LL ans = ;
hm[].clear(), hm[].clear(), hm[].push(, );
REP(i, , n)
REP(j, , m)
{
if (maze[i][j] != '?')
{
if (maze[i][j] == '#') dp_block(i, j, cur);
else dp_blank(i, j, cur);
}
else
{
REP(t, , )
{
if (t < && x[t] != -) continue ;
maze[i][j] = sp[t];
if (maze[i][j] == '#') dp_block(i, j, cur);
else dp_blank(i, j, cur);
}
}
hm[cur].clear(), cur ^= ;
}
REP(i, , hm[cur].siz-)
{
decode(hm[cur].state[i]);
if ((!code[m+]) || (!code[m+]) || (!code[m+])) continue ;
int t = code[m+];
if (code[m+] != t || code[m+] != t) continue ;
add(ans, hm[cur].f[i]);
}
printf("%I64d\n", ans);
} int main()
{
in();
work();
return ;
}

【GDKOI 2016】地图 map 类插头DP的更多相关文章

  1. GDKOI 2016

    GDKOI 2016 day 1 第一题 魔卡少女 题目描述:维护一个序列,能进行以下两个操作:1.将某一个位置的值改变.2.求区间的连续子串的异或值的和. solution 因为序列的数的值都小于\ ...

  2. 插头dp练习

    最近学了插头dp,准备陆续更新插头dp类练习. 学习论文还是cdq那篇<基于连通性状态压缩的动态规划问题>. 基本的想法都讲得很通透了,接下来就靠自己yy了. 还有感谢kuangbin大大 ...

  3. UVA11270 Tiling Dominoes —— 插头DP

    题目链接:https://vjudge.net/problem/UVA-11270 题意: 用2*1的骨牌填满n*m大小的棋盘,问有多少种放置方式. 题解: 骨牌类的插头DP. 1.由于只需要记录轮廓 ...

  4. HDU 4113 Construct the Great Wall(插头dp)

    好久没做插头dp的样子,一开始以为这题是插头,状压,插头,状压,插头,状压,插头,状压,无限对又错. 昨天看到的这题. 百度之后发现没有人发题解,hust也没,hdu也没discuss...在acm- ...

  5. 插头DP专题

    建议入门的人先看cd琦的<基于连通性状态压缩的动态规划问题>.事半功倍. 插头DP其实是比较久以前听说的一个东西,当初是水了几道水题,最近打算温习一下,顺便看下能否入门之类. 插头DP建议 ...

  6. hdu1693:eat trees(插头dp)

    题目大意: 题目背景竟然是dota!屠夫打到大后期就没用了,,只能去吃树! 给一个n*m的地图,有些格子是不可到达的,要把所有可到达的格子的树都吃完,并且要走回路,求方案数 题解: 这题大概是最简单的 ...

  7. 动态规划之插头DP入门

    基于联通性的状态压缩动态规划是一类非常典型的状态压缩动态规划问题,由于其压缩的本质并不像是普通的状态压缩动态规划那样用0或者1来表示未使用.使用两种状态,而是使用数字来表示类似插头的状态,因此.它又被 ...

  8. hdu1964之插头DP求最优值

    Pipes Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...

  9. ural1519插头DP

    1519. Formula 1 Time limit: 1.0 second Memory limit: 64 MB Background Regardless of the fact, that V ...

随机推荐

  1. decimal, float 和double

    阿里的 Java 手册里写着: 6. [强制] 小数类型为 decimal,禁止使用 float 和 double. 说明:float 和 double 在存储的时候,存在精度损失的问题,很可能在值的 ...

  2. 关于MYSQL group by 分组按时间取最大值的实现方法

    类如 有一个帖子的回复表,posts( id , tid , subject , message ,  dateline ) , id 为 自动增长字段, tid为该回复的主题帖子的id(外键关联), ...

  3. ubuntu 下没有pthread库以及报undefined reference to 'pthread_create'的解决方法

    https://blog.csdn.net/dyzhen/article/details/79058554

  4. mac 无法验证副本

    转: 这个是拆机后断了电源,导致时间不对,也就是说现在电脑的时间比U盘制作的时间还早,所以有这样的错误提示. 在终端里面修改时间请参考下面的代码,按回车键确认:date 062614102014.30 ...

  5. 爬虫笔记之w3cschool注册页面滑块验证码破解(巨简单滑块位置识别,非鼠标模拟轨迹)

    一.背景介绍 最开始接触验证码破解的时候就是破解的w3cschool的使用手机号找回密码页面的验证码,详见:验证码识别之w3cschool字符图片验证码(easy级别),这次破解一下他们注册页面的滑块 ...

  6. PyQT5 No module named ‘PyQt5.QtWebEngineWidgets’

    PyQT5查找不到模块QtWebEngineWidgets pip install pyqt5==5.10.1 或 安装64位的Pyhon解释器

  7. Loadrunner里面的深入理解Resource 的 0和1

    最近在倒腾loadrunner,发现一些非常有意思的配置项,也许同学们平时去玩的时候,没有注意这些点.我也查阅了网上的帖子,说的都不够详细~操作起来的话,同学们也只是看到文字的描述,并不能发现区别.今 ...

  8. AC自动机(Keywords Search)

    题目链接:https://cn.vjudge.net/contest/280743#problem/A 题目大意:首先给你T组测试样例,然后给你n个字符串,最后再给你一个模式串,然后问你这一些字符串中 ...

  9. C++产生固定范围内的固定数量的随机数

    #include<iostream> #include<ctime> #include<random> using namespace std; void knut ...

  10. 【API】注册表编程基础-RegCreateKeyEx、RegSetValueEx

    1.环境: 操作系统:Windows 10 x64 编译器:VS2015 2.关键函数 LONG WINAPI RegCreateKeyEx( _In_ HKEY hKey, _In_ LPCTSTR ...